日本地球惑星科学連合2022年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-CC 雪氷学・寒冷環境

[A-CC29] アイスコアと古環境モデリング

2022年5月26日(木) 09:00 〜 10:30 301B (幕張メッセ国際会議場)

コンビーナ:川村 賢二(情報・システム研究機構 国立極地研究所)、コンビーナ:竹内 望(千葉大学)、阿部 彩子(東京大学大気海洋研究所)、コンビーナ:植村 立(名古屋大学 環境学研究科)、座長:川村 賢二(情報・システム研究機構 国立極地研究所)、竹内 望(千葉大学)

09:00 〜 09:15

[ACC29-01] Changes in concentration and size of black carbon particles at Dome Fuji, Antarctica across the Last Glacial Termination

*東 久美子1,2茂木 信宏3、福田 かおり1、尾形 純1森 樹大3大畑 祥4近藤 豊1小池 真3、平林 幹啓1、北村 享太郎1米倉 綾香2藤田 秀二1,2中澤 文男1,2小川 佳美1川村 賢二1,2 (1.国立極地研究所、2.総合研究大学院大学、3.東京大学、4.名古屋大学)

キーワード:南極ドームふじ、最終退氷期、ブラックカーボン

Black carbon (BC) can affect Earth’s radiation budget by absorbing sunlight and reducing the albedo of snow and ice surfaces (e.g. Bond et al., 2013). It can also affect cloud microphysics by acting as cloud condensation nuclei or ice nucleating particles (e.g. Bond et al., 2013). Furthermore, BC emitted from large wildfires can affect air quality and ecosystems. BC can thus affect climate and the environment. Climate changes can in turn change frequencies and magnitudes of wildfires and hence BC emissions. Despite numerous studies through observations and aerosol/climate models, we have only limited knowledge on the impacts of BC on radiative forcing, albedo reduction, and cloud microphysics. Our knowledge on the impacts of climate change on BC emissions is also limited. Ongoing global warming could impact wildfires. But predictions are hampered by limited long-term records of natural wildfires. Ice core BC data can provide us with excellent records of past natural wildfires.

We analyzed the second Dome Fuji deep ice core drilled in East Antarctica for the depth interval between 200 and 640 m, which corresponds to the Last Glacial Maximum (LGM) to mid-Holocene period. To obtain continuous high-resolution data, we used a Continuous Flow Analysis (CFA) system developed at the National Institute of Polar Research. The CFA system enabled us to obtain high-resolution data of BC, stable isotopes of water, microparticles and 8 elements (Na, K, Mg, Ca, Fe, Al, Si and S). For BC analysis, we used a recently developed Wide-range (WR) SP2 (Single Particle Soot Photometer), which can detect BC particles in a size range between 70 and 4000 nm (Mori et al., 2016). A combination of WR-SP2 and a high-efficiency nebulizer allowed us accurate measurements of BC concentrations and size distributions. Here we present the first BC record for the LGM to the mid-Holocene period in East Antarctica.

BC mass concentration was high at LGM, decreased over the Last Glacial Termination, and increased again during the early Holocene. We also find that the temporal trends in BC number concentrations are different for different size ranges. The average mass of BC particles was larger in LGM and decreased during the Last Glacial Termination. The temporal trend in BC mass concentration found in Dome Fuji core is different from that found in WAIS Divide ice core, which shows low BC concentrations at LGM and an increasing trend during the Last Glacial Termination. The difference could be due to spatial variability in Antarctica and/or different size ranges of BC measurements.

References
Bond, T. C. et al., Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380– 5552, doi:10.1002/jgrd.50171., 2013.

Mori, T. et al., Improved technique for measuring the size distribution of black carbon particles in liquid water, Aerosol Science & Technology, 50, 3, 242-254, DOI: 10.1080/02786826.2016.1147644, 2016.