日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG36] 海洋と大気の波動・渦・循環の力学

2022年5月25日(水) 09:00 〜 10:30 展示場特設会場 (2) (幕張メッセ国際展示場)

コンビーナ:青木 邦弘(国立研究開発法人 海洋研究開発機構)、コンビーナ:Keating Shane R(University of New South Wales)、久木 幸治(琉球大学)、コンビーナ:杉本 憲彦(慶應義塾大学 法学部 日吉物理学教室)、座長:青木 邦弘(国立研究開発法人 海洋研究開発機構)

10:15 〜 10:30

[ACG36-06] Absolute instabilities in the spatially developing Kuroshio Extension

*X. San Liang1,2,3、Jianyu Hu2,3 (1.Fudan University, Shanghai, China、2.Xiamen University, Xiamen, China、3.State Key Laboratory of Marine Environmental Science, Xiamen, China)

キーワード:Kuroshio Extension, Absolute instability, Convective instability, Intrinsic oscillation, Intraseasonal variability

Satellite observations have long revealed to us a spatially growing Kuroshio Extension (KEx), but its underlying dynamics is yet to be studied. With a normal mode model of absolute/convective instability, it is found that the mean zonal jet is unstable at all the sections in the downstream region (east of 154oE). In each of the resulting complex dispersion relation diagrams there lies a single saddle point associated with a positive temporal growth rate; that is to say, the mean jet is absolutely unstable, implying that KEx favors self-sustained oscillations. By calculation the absolute instability wave has a period increasing from about 27 days to 72 days, and a slightly decreasing wavelength from 360 km to 250 km, as longitude increases from 154 oE to 174 oE, agreeing with those inferred from the wavelet power spectra and Hovmöller diagram of the satellite observations. As KEx travels downstream, the associated eigen-structure of the perturbation velocity changes from a surface trapped mode to a mode with components maximized in the vertical interior. This study shows that at least a portion of the KEx intraseasonal variability is of intrinsic origin, and may be predictable with the absolute/convective instability theory.