日本地球惑星科学連合2022年大会

講演情報

[E] ポスター発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG37] グローバル炭素循環の観測と統合解析

2022年6月3日(金) 11:00 〜 13:00 オンラインポスターZoom会場 (11) (Ch.11)

コンビーナ:市井 和仁(千葉大学)、コンビーナ:Prabir Patra(Research Institute for Global Change, JAMSTEC)、伊藤 昭彦(国立環境研究所)、コンビーナ:Hoffman Forrest M.(Oak Ridge National Laboratory)、座長:市井 和仁(千葉大学)

11:00 〜 13:00

[ACG37-P02] Refinement of a Model for Upscaling of Soil Respiration in Japan

*山貫 緋称1市井 和仁1山本 雄平1小槻 峻司1、孫 力飛2、梁 乃申2寺本 宗正3永野 博彦4平野 高司5高木 健太郎5、石田 祐宣6高木 正博7、近藤 俊明8、小嵐 淳9、安藤 麻里子9高橋 善幸2 (1.千葉大学環境リモートセンシング研究センター、2.国立環境研究所、3.鳥取大学乾燥地研究センター、4.新潟大学、5.北海道大学、6.弘前大学、7.宮崎大学、8.国際農林水産業研究センター、9.日本原子力研究開発機構)


キーワード:炭素循環、土壌呼吸、リモートセンシング、機械学習、広域推定、二酸化炭素フラックス

Soil Respiration (SR), the sum of root respiration and heterotrophic respiration, is one of the most essential components of soil carbon cycles. However, large uncertainties remain in its temporal and spatial variations. So far, various efforts have been conducted to understand SRs. Many observation stations directly measure SR using chambers. Using these observation data and literature surveys, several studies estimated spatio-temporal patterns of SR at global and regional scales based on semi-empirical models and machine-learning methods. However, the database (e.g. Soil Respiration Database; SRDB) used in these large-scale studies contains inconsistently observed datasets. These inconsistencies may produce additional uncertainties in estimated fluxes. The largest SR observation network across Asia developed and maintained by NIES, Japan can be a good candidate to estimate spatio-temporal variations in SR across Asia, since these observations have been conducted with a consistent observation protocol and quality controls.

In this study, we refined our model to estimate SR across Japan with observation data (eight sites across Japan), remote sensing data (MODIS land products), and random forest regression. We newly added soil temperature and moisture by a process-based model, the Simple Biosphere model including Urban Canopy (SiBUC). Our estimation shows a reasonable performance with R2=0.72 for the in-situ model and R2=0.73 for remote sensing and in-situ combined model on average. Based on the established model, we also produced upscaled estimations of SR across Japan with a spatial resolution of 4 km from 2000 to 2020.

Intercomparison of our estimation with other available datasets was also conducted to understand the advantages of our estimation. Our results show spatially more explicit variations compared with other global products. In addition, our advantage is to capture temporal variations (e.g. 8 days). We also confirmed that previous estimations do not reproduce our observation network datasets, indicating consistent observation approach is important to upscale soil respiration.