日本地球惑星科学連合2022年大会

講演情報

[E] ポスター発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG38] 衛星による地球環境観測

2022年5月31日(火) 11:00 〜 13:00 オンラインポスターZoom会場 (11) (Ch.11)

コンビーナ:沖 理子(宇宙航空研究開発機構)、コンビーナ:本多 嘉明(千葉大学環境リモートセンシング研究センター)、高薮 縁(東京大学 大気海洋研究所)、コンビーナ:松永 恒雄(国立環境研究所地球環境研究センター/衛星観測センター)、座長:本多 嘉明(千葉大学環境リモートセンシング研究センター)、高薮 縁(東京大学 大気海洋研究所)、松永 恒雄(国立環境研究所地球環境研究センター/衛星観測センター)

11:00 〜 13:00

[ACG38-P08] Implementation and Validation of Rainfall Normalization Module for GSMaP Microwave Imagers and Sounders

*山本 宗尚1久保田 拓志1 (1.国立研究開発法人宇宙航空研究開発機構 地球観測研究センター)

キーワード:降水、検証、マイクロ波放射計、センサ間補正

Satellite precipitation data sets including Global Satellite Mapping of Precipitation (GSMaP) are based on observations by multiple microwave radiometers/sounders (MWRs/MWSs) and infrared radiometers. Due to different specification of the instruments (i.e., onboard bands, frequency, field of view etc.) and different precipitation estimation algorithms, differences in the estimated precipitation for each satellite sensor exists. Even MWIs constellation which have similar microwave channels, they are not identical characteristics. Therefore, the differences in the estimated precipitation for each satellite sensor exist. It is difficult to reduce such differences by the conventional algorithm, and implementation of a rainfall normalization method has been expected. We developed the Method of Microwave rainfall Normalization (MMN) for GSMaP Product version 05 (algorithm version 8) Level 3 precipitation data of each satellite sensor, which was released in December 2021.

In order to validate the MMN, scatter diagrams, zonal mean evaluations, and some statistical indices of precipitation intensity are compared between before and after the MMN correction using match-up data within 15 minutes for each sensor with the Dual-frequency Precipitation Radar (DPR) and the Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPM core observatory.

The zonal mean precipitation after the MMN correction was closer to the GMI than before the MMN correction. The distribution of monthly mean precipitation anomaly for each sensor relative to GMI was closer to that of GMI relative to DPR after the MMN correction. The distribution of the monthly mean precipitation anomaly for each sensor relative to the GMI was close to that of the GMI relative to the DPR after the MMN correction.