日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-HW 水文・陸水・地下水学・水環境

[A-HW23] 水循環・水環境

2022年5月23日(月) 13:45 〜 15:15 301B (幕張メッセ国際会議場)

コンビーナ:福士 圭介(金沢大学環日本海域環境研究センター)、コンビーナ:林 武司(秋田大学教育文化学部)、飯田 真一(国立研究開発法人森林研究・整備機構森林総合研究所森林研究部門森林防災研究領域水保全研究室)、コンビーナ:岩上 翔(国立研究開発法人 森林研究・整備機構 森林総合研究所)、座長:福士 圭介(金沢大学環日本海域環境研究センター)、林 武司(秋田大学教育文化学部)、飯田 真一(国立研究開発法人森林研究・整備機構森林総合研究所森林研究部門森林防災研究領域水保全研究室)、岩上 翔(国立研究開発法人 森林研究・整備機構 森林総合研究所)

14:05 〜 14:20

[AHW23-07] Multi-objective optimization for green infrastructure planning with cost-effectiveness analysis based on TOPSIS

*Kexin Liu1Tsuyoshi Kinouchi1 (1.Tokyo institute of technology)


キーワード:Urban hydrology, green infrastructure, urban flood, water quality

The dramatic change in climate and urbanization increase the risk of urban flood and water pollution, resulting in massive disruptions in existing ecosystems, societies, and economies. Green infrastructure (GI) is a natural-based rainwater management method that can provide many benefits for future urban planning. However, there is a lack of unified criteria for the integration of multi-objective benefits of GI, which impedes the application of GI to reliable engineering designs. Moreover, current research mainly focuses on the effectiveness of GI in flood mitigation. Other intangible benefits, such as water quality improvements and cost-effectiveness analyses, received little attention in the literature. Therefore, this research aims at the multi-objective optimization of green infrastructure planning with a cost-effectiveness analysis. PCSWMM was used to simulate and validate flooding and pollutant loads from actual storm events, in our case study area, Phnom Penh city, with an average NSE of 0.8. Based on the calibrated model, we analyzed and selected the type, location, and scale of GI infrastructures using SUSTAIN, which is a decision support system that selects GI strategies based on cost and effectiveness at various watershed scales. In this study, we considered three dimensions: hydrological (reduction rate of flood volume and peak flood volume), environmental (reduction rate of COD, SS, and E. coli contamination), and economic (construction cost) impacts for multi-objective analysis. The optimal solution analysis of the GI's design options was performed using TOPSIS algorithm. It would potentially serve as more efficient guidance in the design of GI at an early stage.