日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-OS 海洋科学・海洋環境

[A-OS12] Marine ecosystems and biogeochemical cycles: theory, observation and modeling

2022年5月23日(月) 09:00 〜 10:30 201A (幕張メッセ国際会議場)

コンビーナ:伊藤 進一(東京大学大気海洋研究所)、コンビーナ:平田 貴文(北海道大学 北極域研究センター)、Hofmann Eileen E(Old Dominion University)、Chairperson:Eileen E Hofmann(Old Dominion University)、伊藤 進一(東京大学大気海洋研究所)


09:05 〜 09:25

[AOS12-01] Competing and accelerating effects of anthropogenic nutrient inputs on climate-driven changes in ocean carbon and oxygen cycles

★Invited Papers

*山本 彬友1羽島 知洋1山崎 大2野口 真希1伊藤 彰記1河宮 未知生1 (1.国立研究開発法人 海洋研究開発機構、2.東京大学生産技術研究所)

キーワード:海洋生物地球化学モデル、大気及び河川からの人為的な栄養塩流入、気候変動

Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. These increasing inputs of nutrients from human activities promote oceanic NPP, potentially partially counteracting decreases caused by climate change. Then, increases in export of organic matter to the ocean interior and its decomposition consumes dissolved oxygen. Therefore, nutrient inputs to the ocean promote carbon uptake and amplify climate-driven ocean deoxygenation. However, the previous generation of Earth system models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5), which contributed substantially to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, did not account for anthropogenic nutrient inputs to the ocean. Several CMIP phase 6 (CMIP6) Earth system models do consider anthropogenic nutrient inputs to the ocean for the historical period, but their impact on ocean biogeochemical cycles has not been fully assessed, even for individual Earth system models. Therefore, our understanding of the impact of such perturbations on ocean biogeochemistry is even less complete than that associated with climate change. In particular, the quantitative relationship between the effects of climate change on ocean biogeochemical cycles and those of anthropogenic nutrient inputs remains poorly understood.

In this study, using historical simulations by one of the CMIP6 models (MIROC-ES2L) that considers anthropogenic nutrient inputs, we demonstrate that the contribution of anthropogenic nutrient inputs to past changes in global oceanic productivity, carbon uptake, and deoxygenation is of similar magnitude to the effect of climate change. In particular, two noteworthy results are obtained: (1) that anthropogenic fertilization could more than counteract the expected decrease in NPP caused by ocean warming and stratification for the historical period, and (2) that it could accelerate climate-driven deoxygenation in the upper ocean, helping to close the gap between models and observations. Additionally, current estimation of the imbalance in the carbon budget could be explained partially by increase in oceanic carbon uptake associated with anthropogenic nutrient inputs to the ocean. These improvements provide support regarding the significant contribution of anthropogenic nutrient inputs to global changes in ocean biogeochemistry. Considering the effects of both nutrient inputs and climate change is crucial in assessing anthropogenic impacts on ocean biogeochemistry.