日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-OS 海洋科学・海洋環境

[A-OS13] 陸域海洋相互作用ー惑星スケールの物質輸送

2022年5月24日(火) 10:45 〜 12:15 201A (幕張メッセ国際会議場)

コンビーナ:山敷 庸亮(京都大学大学院総合生存学館)、コンビーナ:佐々木 貴教(京都大学 大学院理学研究科 宇宙物理学教室)、升本 順夫(東京大学大学院理学系研究科)、コンビーナ:Behera Swadhin(Climate Variation Predictability and Applicability Research Group, Application Laboratory, JAMSTEC, 3173-25 Showa-machi, Yokohama 236-0001)、座長:升本 順夫(東京大学大学院理学系研究科)、Behera Swadhin(Climate Variation Predictability and Applicability Research Group, Application Laboratory, JAMSTEC, 3173-25 Showa-machi, Yokohama 236-0001)

11:30 〜 11:45

[AOS13-10] Surface air maximum temperature anomaly prediction over India at medium-range time scale using machine learning techniques

*Venkata Ratnam Jayanthi1Swadhin Behera1Masami Nonaka1Patrick Martineau1、Kalpesh R Patil1 (1.Application Laboratory, JAMSTEC)

キーワード:Heatwaves

India experiences high surface air temperatures in the months from March to June which sometimes leads to heatwave-like conditions. Predicting the surface air maximum temperature anomalies at least 10 days ahead (at medium-range time scale) would help the decision-makers and the society as a whole. In this study, we used various machine learning techniques to predict the surface air maximum temperature anomalies over India in the months from March to June. The input attributes to the machine learning models are derived using lag correlation between observed surface air maximum temperature anomalies and sea surface temperature as well as with soil moisture anomalies. The results indicate the predictions of the AdaBoost regressor and the Bagging regressor with Multi-layer Perceptron as the base estimator to have higher correlation along with higher hit rates and lower false alarm rates compared to several other machine learning techniques. The results show the machine learning models to be promising tools to predict the surface air maximum temperature anomalies over India.