日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-OS 海洋科学・海洋環境

[A-OS15] Waves, Storm Surges, and Related Hazards

2022年5月23日(月) 10:45 〜 12:15 202 (幕張メッセ国際会議場)

コンビーナ:Webb Adrean(京都大学 防災研究所 気象・水象災害研究部門 沿岸災害研究分野)、コンビーナ:Chabchoub Amin(Kyoto University)、Marsooli Reza(Stevens Institute of Technology)、Chairperson:Adrean Webb(京都大学 防災研究所 気象・水象災害研究部門 沿岸災害研究分野)、Amin Chabchoub(Kyoto University)、Reza Marsooli(Stevens Institute of Technology)

11:00 〜 11:15

[AOS15-02] Impact of large distributed sensor networks on global wave forecasts

★Invited Papers

*Pieter Smit1、Isabel Houghton1、Christie Hegermiller1 (1.Sofar Ocean, San Francisco, CA)

キーワード:Spotter buoy, wave forecasting, global sensor network

In-situ open ocean wave observations have historically been exceedingly sparse. Consequently, despite the development of advanced data assimilation strategies, data availability limits the potential for model accuracy improvements, with major consequences for coastal communities and maritime industries. Starting in 2019, Sofar has been deploying a global network of surface drifters to increase data density in the world's oceans. Each node in this network consists of a Spotter buoy: a basketball-sized, solar-powered buoy that provides hourly observations of wave spectra (including directional moments), as well as sea surface temperature, barometric pressure, drift and surface winds. Since its inception, this network has grown to more than 700 units worldwide, and is expected to grow to 1500 units by the end of the year.

In this work we present the network, its performance and expansion, and specifically its application to wave forecasting. Sofar runs a global WaveWatch3 model that uses sequential data assimilation of wave observations to improve forecast accuracy. Recently (January 2022), and unique to our forecast, this system has switched to using spectral data from the buoys, rather than wave height only, yielding greatly improved forecast skill. A one-month-long re-analysis comparing the baseline non-assimilative model, significant wave height-based assimilation, and the novel assimilation on a spectral per-frequency basis illustrates improvements in bulk parameter predictions up to four-day lead times. The shift from scarce, coastal-focused spectral observations and satellite observations limited to significant wave height to global, high density coverage of full-spectra observations vastly expands the potential for improving marine weather forecasting accuracy if effective methods for utilization of this data can be developed and operationalized. In this work, we present a first step toward immediate utilization of this global sensor network for improved nowcast and forecast predictions.