日本地球惑星科学連合2022年大会

講演情報

[J] ポスター発表

セッション記号 H (地球人間圏科学) » H-RE 応用地質学・資源エネルギー利用

[H-RE13] 資源地質学

2022年6月2日(木) 11:00 〜 13:00 オンラインポスターZoom会場 (16) (Ch.16)

コンビーナ:大竹 翼(北海道大学大学院工学研究院 環境循環システム部門)、コンビーナ:実松 健造(国立研究開発法人 産業技術総合研究所 地圏資源環境研究部門 鉱物資源研究グループ)、高橋 亮平(秋田大学大学院国際資源学研究科)、コンビーナ:野崎 達生(国立研究開発法人 海洋研究開発機構 海洋機能利用部門 海底資源センター)、座長:大竹 翼(北海道大学大学院工学研究院 環境循環システム部門)

11:00 〜 13:00

[HRE13-P05] 高品位Nラテライト鉱石におけるホスト相同定のための逐次抽出法の改善

*大竹 翼1、大門 嵩泰2実松 健造3高橋 嘉夫4佐藤 努1 (1.北海道大学大学院工学研究院 環境循環システム部門、2.北海道大学工学部 資源循環システムコース、3.産業技術総合研究所 地圏資源環境研究部門、4.東京大学大学院理学系研究科 地球惑星科学専攻)

キーワード:ニッケル、化学風化、超苦鉄質岩、逐次抽出、粘土鉱物

Ni laterite deposits, currently the major sources of Ni ores, are formed by chemically weathering of ultramafic rocks in tropical to sub-tropical climates. Regardless of the significance in the mineral exploration and processing, host phases of Ni in Ni laterite ores are not readily identifiable by conventional mineralogical analyses due to possible presence of amorphous weathering products. Although sequential extraction methods have been primarily used to identify host phases of various elements in soils, application of sequential extraction to Ni laterite ores may be problematic because of the different physicochemical properties, for example, high Fe contents. Therefore, we aimed to modify a sequential extraction method first developed by Geological Survey of Canada (mGSC method [1]), which has been used for tropical soils, for Ni laterite ores. Then, using the method, we investigated chemical states of Ni in different types of Ni laterite ore deposits, namely a hydrous Mg silicate deposit at Petea Hill in Soroako mine, Indonesia [2], and a hybrid deposit of hydrous Mg silicate and clay silicate types in Tagaung Taung mine, Myanmar [3]. We were particularly focused on modification of extraction for ion exchangeable as well as iron (hydr)oxides phases.
Best selective extraction of Ni for ion exchangeable as well as iron (hydr)oxides phases from the laterite and saprolite samples was achieved by using ammonium acetate and sodium dithionite/citrate (DCB method), respectively. Although DCB method was repeated three times to increase recovery of Fe from (hydr)oxides, subsequent analysis for the residual phases shows minimal dissolution of silicate phases for almost all the samples but lower saprolite samples from Petea Hill. The modified sequential extraction applied to the whole weathering profiles demonstrated that Ni was mainly present in the crystal structure of silicate minerals in the saprolite layers at both Petea Hill and Tagaung Taung. The results are consistent with previous XRD and EPMA analyses suggesting secondary serpentine and smectite as the primary host minerals for Ni in the saprolite layer at Petea Hill and Tagaung Taung, respectively [2, 3]. Extraction of ion exchangeable phases from saprolite samples at Tagaung Taung suggests that Mg2+ is the major interlayer cation in the smectite. Although these silicate minerals are the main Ni hosts in the saprolite layers at both weathering profiles, the sequential extraction results also suggest that significant fractions (up to ~20%) of Ni were hosted by low crystalline Fe oxides in the saprolite layers. This is supported by EXAFS spectra obtained from the lower saprolite samples where Ni is highly concentrated. These results imply that Fe oxides may also concentrate Ni in the saprolite layer and play important roles in the Ni enrichment processes in both deposits.

[1] Hall, G.E.M., Beer, V. R., and Hoashi, M. (1996) J. Geochem. Explor. 56, 59-78.
[2] Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, Sato, T. (2021) Resour. Geol. 71. 255-82.
[3] Murofushi, A., Otake, T., Sanematsu, K., Zay Ya, K., Ito, A., Kikuchi, R., and Sato, T. (2022) Miner. Deposita.