日本地球惑星科学連合2022年大会

講演情報

[J] ポスター発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS21] 地球流体力学:地球惑星現象への分野横断的アプローチ

2022年6月1日(水) 11:00 〜 13:00 オンラインポスターZoom会場 (31) (Ch.31)

コンビーナ:伊賀 啓太(東京大学大気海洋研究所)、コンビーナ:吉田 茂生(九州大学大学院理学研究院地球惑星科学部門)、柳澤 孝寿(国立研究開発法人海洋研究開発機構 海域地震火山部門)、コンビーナ:相木 秀則(名古屋大学)、座長:伊賀 啓太(東京大学大気海洋研究所)

11:00 〜 13:00

[MIS21-P01] 遅い磁気 Rossby 波とAlfvén 波の連続固有値を伴う回転球面上の 2 次元理想 MHD 波動

*中島 涼輔1吉田 茂生2 (1.九州大学 大学院理学研究院、2.九州大学 大学院理学研究院 地球惑星科学部門)

キーワード:MHD 波動、地球外核最上部の安定成層、磁気 Rossby 波、連続固有値、臨界層

Two-dimensional ideal magnetohydrodynamic (MHD) linear waves on a rotating sphere are focused on as a model of a stably stratified layer at the top of the Earth's core. This thin stable layer can accommodate MHD waves which may induce various geomagnetic and geodetic variations (e.g. Gillet et al., 2021[1]; Triana et al., 2021[2]). Under the Malkus background field B = B0 sinθ, where B0 is a constant, Φ is the longitude and θ denotes the colatitude, linear waves in a thin layer are categorized into two types of branches, which correspond to westward-propagating fast magnetic Rossby waves and eastward-propagating slow counterparts, and on which both modes gradually become Alfvén waves as this field strengthens (Zaqarashvili et al., 2007[3]; Márquez-Artavia et al., 2017[4]). Slow magnetic Rossby waves are especially put weight on as a cause of decadal and subdecadal geomagnetic fluctuations (e.g. Chulliat et al., 2015[5]; Chi-Durán et al., 2021[6]). On the other hand, non-Malkus fields such as plausible toroidal fields within the Earth's core make our linear problem complicated due to the advent of regular singular points in its equation. At these singular latitudes for a given wave, the zonal phase velocity of the wave is equal to the local Alfvén speed at the latitude. In the present presentation, we demonstrate that a non-Malkus field B = B0 sinθcosθ yields a continuous spectrum and an infinite number of singular eigenmodes instead of slow magnetic Rossby discrete modes, which are worthy of attention in studying Earth's magnetism, and Alfvén ones.

Slowly varying wavetrains in inhomogeneous fields are also investigated to compare with our numerical calculation seeking eigenmodes. This implies that a wave packet of the continuous modes propagates toward the critical latitude corresponding to the wave with its pseudomomentum conserved and is ultimately absorbed there. In addition, we found that the behavior that westward- (eastward-) propagating packets approach the latitudes from the equatorial (polar) side is consistent with the tendency which the profiles of their eigenfunctions have. Further thorough discussions of the continuous spectra possibly improve the theory of wave-mean field interaction and one's understanding of the dynamics in the layer.

The geophysically traditional approximation in which one ignores the inertia term is useful to discuss slow MHD waves including slow magnetic Rossby waves (e.g. Buffett and Matsui, 2019[7]). This approximation can also conveniently rule out the continuous modes, which lead to difficulties with our problem. However, this can have a severe influence on the existence of the critical latitudes, hence eigenmodes significantly different from the original. We therefore urge that one should not carelessly drop the inertial effect in the system in which main fields possess spatial dependence.

[ Reference ]
[1] Gillet, N., Gerick, F., Angappan, R., Jault, D. (2021) Surv. Geophys., doi: 10.1007/s10712-021-09664-2
[2] Triana, S.A., Dumberry, M., Cébron, D., Vidal, J., Trinh, A., Gerick, F., Rekier, J. (2021) Surv. Geophys., doi: 10.1007/s10712-021-09668-y
[3] Zaqarashvili, T.V., Oliver, R., Ballester, J.L., Shergelashvili, B.M. (2007) Astron. Astrophys., 470, 815–820, doi: 10.1051/0004-6361:20077382
[4] Márquez-Artavia, X., Jones, C.A., Tobias, S.M. (2017) Geophys. Astrophys. Fluid Dyn., 111, 282–322, doi: 10.1080/03091929.2017.1301937
[5] Chulliat, A., Alken, P., Maus, S. (2015) Geophys. Res. Lett., 42, 3321-3329, doi: 10.1002/2015GL064067
[6] Chi-Durán, R., Avery, M.S., Buffett, B.A. (2021) Geophys. Res. Lett., 48, e2021GL094692, doi: 10.1029/2021GL094692
[7] Buffett, B., Matsui, H. (2019) Geophys. J. Int., 218, 1210–1225, doi: 10.1093/gji/ggz233