日本地球惑星科学連合2022年大会

講演情報

[J] ポスター発表

セッション記号 M (領域外・複数領域) » M-ZZ その他

[M-ZZ48] 再生可能エネルギーと地球科学

2022年5月31日(火) 11:00 〜 13:00 オンラインポスターZoom会場 (34) (Ch.34)

コンビーナ:大竹 秀明(国立研究開発法人 産業技術総合研究所 再生可能エネルギー研究センター)、コンビーナ:野原 大輔(電力中央研究所)、コンビーナ:島田 照久(弘前大学大学院理工学研究科)、コンビーナ:宇野 史睦(日本大学文理学部)、座長:大竹 秀明(国立研究開発法人 産業技術総合研究所 再生可能エネルギー研究センター)

11:00 〜 13:00

[MZZ48-P06] 勾配ブースティング決定木を用いた風力発電出力予測とその解釈性に関する基礎的検討

*菅野 湧貴1野原 大輔1大庭 雅道1、藤本 悠2 (1.電力中央研究所、2.早稲田大学)

キーワード:風力発電、勾配ブースティング決定木

The amount of renewable energy sources, such as photovoltaic and wind power generation, has been increasing. Because the power generation by renewable energy sources highly depends on weather patterns, an accurate prediction of wind power generation using a numerical weather prediction is important for balancing the electricity supply and demand. In this study, we performed a prediction of wind power generation using gradient boosting decision trees (GBDT) at four windfarms (WFs) in Japan and discuss the interpretability of the GBDT model using SHapley Additive exPlanations (SHAP). The GBDT model is constructed by learning the relationship between the WF power generation data and the numerical weather prediction data for two hours before and after the target forecast time around the target WF for a year. The prediction using GBDT is compared with a prediction that uses wind speed data from a numerical weather prediction at the nearest grid point of target WF and catalogue power curve as a reference. An evaluation of 8 months prediction showed that our prediction substantially reduces prediction errors compared with reference one by reducing bias errors. We tried to interpret the obtained GBDT model using SHAP. The spatial distribution of the SHAP value, which is a metric for the importance for explanatory variables, around the target WF shows that the value is higher over land than ocean, which indicates that explanatory variables over land are more important that those over ocean.