日本地球惑星科学連合2022年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG20] 宇宙における物質の形成と進化

2022年5月27日(金) 15:30 〜 17:00 302 (幕張メッセ国際会議場)

コンビーナ:大坪 貴文(自然科学研究機構 国立天文台)、コンビーナ:野村 英子(国立天文台 科学研究部)、瀧川 晶(東京大学 大学院理学系研究科 地球惑星科学専攻)、コンビーナ:荒川 創太(国立天文台)、座長:野津 翔太(理化学研究所 開拓研究本部 坂井星・惑星形成研究室)、古家 健次(国立天文台)


16:15 〜 16:30

[PCG20-10] Hayabusa2 Initial Analysis of Macromolecular Organic Matter in the Asteroid Ryugu Samples

*薮田 ひかる1、Cody George2、Engrand Cecile3癸生川 陽子4、De Gregorio Brad5、Bonal Lydie6、Remusat Laurent7、Stroud Rhonda5、Quirico Eric6、Nittler Larry2橋口 未奈子8小松 睦美9、Dartois Emmanuel10、Mathurin Jeremie11、Duprat Jean7奥村 大河12高橋 嘉夫12、武市 泰男13、Kilcoyne David14、山下 翔平13、Alexandre Dazzi11、Deniset-Besseau Ariane11、Sandford Scott15、Martins Zita16為則 雄祐17、大東 琢治18菅 大暉17若林 大佑13、Verdier-Paoletti Maximilien7、Mostefaoui Smail7、Montagnac Gilles19、Barosch Jens2上出 奏海1重中 美歩1、Bejach Laure3野口 高明20圦本 尚義21中村 智樹22岡崎 隆司23奈良岡 浩23、坂本 佳奈子24橘 省吾12渡邊 誠一郎8津田 雄一24 (1.広島大学、2.カーネギー研究所、3.パリ=サクレー大学, IJCLab、4.横浜国立大学、5.アメリカ海軍調査研究所、6.グルノーブル・アルプ大学、7.パリ国立自然史博物館、8.名古屋大学、9.総合研究大学院大学、10.パリ=サクレー大学, ISMO、11.パリ=サクレー大学, ICP、12.東京大学、13.高エネルギー加速器研究機構、14.バークレー国立研究所Advanced Light Source、15.NASAエイムズ研究センター、16.ポルトガル 高等技術研究所、17.高輝度光科学研究センターSPring8、18.分子科学研究所, 極端紫外光研究施設、19.リヨン高等師範学校、20.京都大学、21.北海道大学、22.東北大学、23.九州大学、24.宇宙航空研究開発機構, 宇宙科学研究所)

キーワード:はやぶさ2、小惑星リュウグウ、固体有機物

Introduction: JAXA’s Hayabusa2 mission explored the carbonaceous asteroid Ryugu and collected its sands and pebbles for investigating the origins of planets and life, [1]. On December 6, 2020, the asteroid sample was returned to the Earth. Through the curatorial work at JAXA, it was reported that the Ryugu samples contain high abundances of hydrous minerals and organics [2, 3]. Afterward, the initial sample analysis has started from June 2021 to classify and characterize the Ryugu samples in the context of the Solar System formation. The Organic Macromolecule Initial Analysis Team aims to unveil the elemental, isotopic, and functional group compositions, structures and morphologies of macromolecular organic matter from the Ryugu samples [4].
Samples and Methods: Chamber A aggregates (A0108) and Chamber C aggregates (C0109) collected at the first and second touchdown sites, respectively, have been analyzed. Additional aggregates from Chamber A (A0106) and Chamber C (C0107) were treated with HCl and HCl/HF to yield insoluble organic matter (IOM).
The analytical procedures included a combination of micro-Fourier transform infrared microspectroscopy (μ-FTIR), micro-Raman spectroscopy, synchrotron-based scanning transmission X-ray microscopy coupled with X-ray absorption near edge structure (STXM-XANES), scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDS), atomic force microscope based infrared spectroscopy (AFM-IR), and nanometer-scale secondary ion mass spectrometry (NanoSIMS).
Results and discussion: The broad Raman D- and G-bands observed from the Ryugu intact grains reflected that organic matter in the asteroid samples has a disordered, polyaromatic structure [5, 6]. Characteristically, the Ryugu samples had high fluorescence background, which is similarly observed in CI chondrites. The Raman spectral parameters show that the Ryugu samples escaped thermal metamorphism on the parent body. The μ-FTIR [7-9] and STXM-XANES [10] analyses of the Ryugu grains showed that organic matter in the asteroid samples is a complex macromolecular solid consisting of aromatic carbon, aliphatic carbon, ketones and carboxyls. Combination of STXM-XANES [10], STEM [11], and AFM-IR [12] revealed that the organic functional group compositions correlate with the morphologies of nano-sized organic matter. Organic nanoglobules are aromatic-rich, while organic matter in Ryugu matrix was IOM-like or diffuse carbon. These organic microstructures were associated with Mg-rich phyllosilicates and carbonates, and thus the observed functional group diversity likely resulted from aqueous alteration on the asteroid parent body. This conclusion is also supported by NanoSIMS measurements showing the hydrogen isotopic distributions of the Ryugu IOM within the range of CI, CM, and Tagish Lake chondrites as well as the similar δ15N values of IOM between the Ryugu samples and CI chondrites [13]. Additionally, some of the individual carbonaceous grains showing extreme D and/or 15N enrichments or depletions could possibly have been derived from the solar nebula or protosolar molecular cloud [14, 15].

References: [1] Tachibana S. et al. (2022) Science, doi: 10.1126/science.abj8624. [2] Yada T. et al. (2021) Nat. Astron. doi.org/10.1038/s41550-021-01550-6. [3] Pilorget C. et al. (2021) Nat. Astron. doi.org/10.1038/s41550-021-01549-z. [4] Yabuta et al. 53rd Lunar Planet Sci., [5] Bonal et al. 53rd Lunar Planet Sci., [6] Komatsu et al. 53rd Lunar Planet Sci., [7] Kebukawa et al. 53rd Lunar Planet Sci., [8] Quirico et al. 53rd Lunar Planet Sci., [9] Dartois et al. 53rd Lunar Planet Sci., [10] De Gregorio et al. 53rd Lunar Planet Sci., [11] Stroud et al. 53rd Lunar Planet Sci., [12] Mathurin et al. 53rd Lunar Planet Sci., [13] Remusat et al. 53rd Lunar Planet Sci., [14] Barosch et al. 53rd Lunar Planet Sci., [15] Nittler et al. 53rd Lunar Planet Sci.