日本地球惑星科学連合2022年大会

講演情報

[E] ポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM12] 太陽地球系結合過程の研究基盤形成

2022年6月3日(金) 11:00 〜 13:00 オンラインポスターZoom会場 (5) (Ch.05)

コンビーナ:山本 衛(京都大学生存圏研究所)、コンビーナ:小川 泰信(国立極地研究所)、野澤 悟徳(名古屋大学宇宙地球環境研究所)、コンビーナ:吉川 顕正(九州大学大学院理学研究院地球惑星科学部門)、座長:山本 衛(京都大学生存圏研究所)、小川 泰信(国立極地研究所)、野澤 悟徳(名古屋大学宇宙地球環境研究所)、吉川 顕正(九州大学大学院理学研究院地球惑星科学部門)

11:00 〜 13:00

[PEM12-P08] Na saturation spectroscopy experiments with theoretical calculations for Na resonance scattering lidar

*渡部 蓮1津田 卓雄1兵藤 初美1、斎藤 徳人2野澤 悟徳3、川端 哲也3川原 琢也4 (1.電気通信大学、2.理化学研究所、3.名古屋大学、4.信州大学)

キーワード:共鳴散乱ライダー、Na 飽和分光実験

The Na resonance scattering lidar is a laser sensing system capable of measuring temperature and wind velocity in the mesosphere and lower thermosphere at 80-110 km altitudes. In order to perform this kind of measurement, it is vitally important to control the absolute laser frequency (or wavelength) for accurate measurements of the Doppler broadening (related with the temperature) and Doppler shift (related with the wind velocity) in the Na resonance fluorescence spectrum. The Na saturation spectroscopy experiments can produce fine structures (<10 MHz or <10 fm), called Lamb dips and crossover peaks, in the Na resonance fluorescence spectrum, and these structures can be used as the absolute frequency standards for the accurate laser frequency control.

In this study, we have been working on development of a new optical system for the Na saturation spectroscopy experiments with its theoretical aspect. For the theoretical calculations, we revisited the previous study, and the modeling of the experiments and its full derivation of the relevant equations have been reconstructed. These works have enabled us to make simulations of the experiments. As for the experiment, we have developed an optical system for the Na saturation spectroscopy experiments, which consisted of distributed feedback (DFB) lasers as a light source, a Na vapor cell, a heater box to maintain the cell in high temperature, etc. In this presentation, we will introduce our theoretical calculations and the developed optical system. Then, we will give some results of both simulations and experiments, and discussion on the performance of the developed optical system based on comparisons between the measured and simulated results.