日本地球惑星科学連合2022年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM16] 宇宙プラズマ理論・シミュレーション

2022年5月22日(日) 09:00 〜 10:30 105 (幕張メッセ国際会議場)

コンビーナ:天野 孝伸(東京大学 地球惑星科学専攻)、コンビーナ:三宅 洋平(神戸大学計算科学教育センター)、梅田 隆行(名古屋大学 宇宙地球環境研究所)、コンビーナ:中村 匡(福井県立大学)、座長:天野 孝伸(東京大学 地球惑星科学専攻)、三宅 洋平(神戸大学計算科学教育センター)

09:15 〜 09:30

[PEM16-02] Dependence on the background magnetic field of ion Weibel instability

*寺境 太樹1天野 孝伸1 (1.東京大学)


キーワード:無衝突衝撃波、ワイベル不安定性、宇宙線

Weibel instability is an electromagnetic instability caused by plasma beams or temperature anisotropy. It is a good candidate for electron heating at collisionless shock transition layers. In astrophysics, Weibel instability usually refers to the instability caused by counterstreaming beams in the absence of a background magnetic field. However, it has been found that the instability caused by high Alfven Mach number ring distribution around the background magnetic field can also be regarded as Weibel instability [1]. It corresponds to an extreme case of electromagnetic ion cyclotron (EMIC) instability. This implies that the beam instability in unmagnetized plasmas and ring instability in magnetized plasmas are connected seamlessly.
We discuss the ion beam instability in the case of a moderate background magnetic field in the sense that the timescale of the instability is shorter than the ion gyro period but longer than the electron gyro period. It is to be noted that a typical young supernova remnant parameter lies in this category. We performed 2D particle-in-cell simulation in various parameters.
We found that the magnetized electrons in the moderate background magnetic field case can amplify the magnetic field further compared to the unmagnetized case, and the amplified magnetic field can cause turbulent structure after magnetic reconnection and Kelvin Helmholtz like instability. Electron heating is also the most efficient in the moderately magnetized case.

[1] T. Nishigai and T. Amano, "Mach number dependence of ion-scale kinetic instability at collisionless perpendicular shock: Condition for Weibel-dominated shock", Physics of Plasmas 28, 072903 (2021)