日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS03] 太陽系小天体:太陽系進化における最新成果と今後の展望

2022年5月26日(木) 09:00 〜 10:30 展示場特設会場 (1) (幕張メッセ国際展示場)

コンビーナ:岡田 達明(宇宙航空研究開発機構宇宙科学研究所)、コンビーナ:黒田 大介(京都大学)、樋口 有理可(産業医科大学)、座長:上椙 真之(公益財団法人高輝度光科学研究センター)、岡田 達明(宇宙航空研究開発機構宇宙科学研究所)

10:00 〜 10:15

[PPS03-10] Hayabusa2 returned samples: Unique and pristine record of Solar System materials from asteroid Ryugu

*伊藤 元雄1富岡 尚敬1上椙 真之2山口 亮3今栄 直也3白井 直樹4、大東 琢治5木村 眞3、Liu Ming-Chang6、Greenwood Richard. C.7、上杉 健太朗2中藤 亜衣子8、与賀田 佳澄8、湯沢 勇人5兒玉 優土山 明9安武 正展2、Findlay Ross7、Franchi Ian A.7、Malley James A.7、McCain Kaitlyn6、Matsuda Nozomi6、McKeegan Kevin. D.6、平原 佳織10、竹内 晃久2、関本 俊11、桜井 郁也12、岡田 育夫12唐牛 譲8矢田 達8安部 正真8臼井 寛裕8渡邊 誠一郎12津田 雄一8 (1.海洋研究開発機構 高知コア研究所、2.高輝度光科学研究センター、3.国立極地研究所、4.東京都立大学、5.分子科学研究所・極端紫外光研究施設、6.UCLA 、7.Open University、8.宇宙航空研究開発機構、9.立命館大学、10.大阪大学、11.京都大学、12.名古屋大学)

キーワード:はやぶさ2、小惑星リュウグウ

The Hayabusa2 spacecraft successfully returned surface materials from the C-type asteroid 162173 Ryugu to Earth on December 6th, 2020. The sample capsule contained many small grains (a few to several mm in size), collected from touchdown (TD) sites 1 and 2 on Ryugu, with a total mass of ~5.4 g [1]. After initial characterization of the grains by JAXA curation [1, 2], eight Ryugu particles (approximately 60 mg), four from Chamber A and four from Chamber C, were allocated to the Phase2 curation Kochi team (Ph2K). The principal goals of the research are to elucidate the nature, origin, and evolutionary history of asteroid Ryugu, and to document the similarities to and/or differences from other known extraterrestrial samples, such as chondritic meteorites, interplanetary dust particles (IDPs) and returned cometary samples collected by the NASA Stardust mission.

On June 19th, 2021, we started initial characterization studies of the allocated particles using a synchrotron radiation-based CT and XRD at the SPring-8. An air-tight sealed carbon nano-tube sample holder was used for CT analysis. To avoid degradation and contamination due to interaction with the terrestrial atmosphere (water vapor and oxygen gas) [3], all the sample preparation (chipping by a chisel, cutting by a counter balanced diamond wire saw, and epoxy mount preparation) was conducted in a glove box in an atmosphere of pure, dry nitrogen. Once we had acquired high-resolution, detailed three-dimensional structural and crystallographic information (0.85 µm/pixel for CT) for each of our samples, we were able to define a priority list for the next phase of the analytical campaign, which involved Ph2K’s coordinated micro- and bulk analysis [4].

All petrological, mineralogical, isotopic and elemental characteristics [5-9] indicate that the allocated Ryugu particles are remarkably similar to CI chondrites [10-11]. These findings are consistent with the results from the initial non-destructive examination of the Ryugu particles undertaken in a contamination-free and pure N2 filled chamber at the JAXA curation facility [1, 2]. Using a combination of STXM-NEXAFS – NanoSIMS – TEM techniques, we have been able to establish the spatial distribution of organics with an aliphatic-rich carbon structure that are associated with phyllosilicates at sub-micrometer scale in the C0068-25 FIB section.

Systematic investigations as part of the first six months of Ph2K activity include studies of detailed bulk petrology, high-resolution mineralogy, high-precision O isotopic compositions of selected particles, and in-situ SIMS oxygen isotopic analysis of anhydrous and carbonate minerals. This work has provided powerful constraints on the origin and evolution of the materials collected from Asteroid Ryugu by the Hayabusa2 spacecraft.

References: [1] Yada et al. (2021) Nature Astron. [2] Pilorget et al. (2021) Nature Astron. [3] Uesugi et al. (2020) RSI 91, 035107. [4] Ito et al. (2020) EPS 72, 133.[5] Yamaguchi et al. (2022) 53rd LPSC. [6] Tomioka et al. (2022) 53rd LPSC. [7] Greenwood et al. (2022) 53rd LPSC. [8] Liu et al. (2022) 53rd LPSC. [9] McCain/Matsuda et al. (2022) 53rd LPSC. [10] Tomeoka & Buseck (1988) GCA 52, 1627–1640. [11] Barrat et al. (2012) GCA 83, 79–92. [12] King et al. (2020) GCA 268, 73–89