日本地球惑星科学連合2022年大会

講演情報

[E] ポスター発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS03] 太陽系小天体:太陽系進化における最新成果と今後の展望

2022年6月2日(木) 11:00 〜 13:00 オンラインポスターZoom会場 (4) (Ch.04)

コンビーナ:岡田 達明(宇宙航空研究開発機構宇宙科学研究所)、コンビーナ:黒田 大介(京都大学)、樋口 有理可(産業医科大学)、座長:黒田 大介(京都大学)、樋口 有理可(産業医科大学)、岡田 達明(宇宙航空研究開発機構宇宙科学研究所)

11:00 〜 13:00

[PPS03-P09] Corrected Temperature Map on Shape Model of Ryugu observed by Thermal Infrared Imager onboard Hayabusa2

*荒井 武彦1岡田 達明2,3田中 智2出村 裕英4神山 徹5坂谷 尚哉6嶌生 有理2、千秋 博紀7関口 朋彦8金丸 仁明2、石崎 拓也2 (1.前橋工科大学、2.宇宙航空研究開発機構、3.東京大学、4.会津大学、5.産業技術総合研究所、6.立教大学、7.千葉工業大学、8.北海道教育大学)

キーワード:はやぶさ2、中間赤外カメラ、形状モデル

The Thermal Infrared Imager (TIR) onboard Hayabusa2 carried out observations of the asteroid 162173 Ryugu in 2018 and 2019 (Okada et al., 2020). TIR globally determined the brightness temperature of the Ryugu surface. The thermal inertia maps on the Ryugu were derived from the observed temperature profiles using the surface roughness model (Shimaki et al., 2020). It estimates the thermophysical properties of the surface to reveal the evolutional history of Ryugu. The observed data have been published on the web page of PDS/NASA and DATRS/JAXA. The observed raw images (Level-1) and the observed brightness temperature images (Level-2) are currently available. In this study, we made the temperature projection maps onto the shape model of Ryugu using a geometric correction method (Arai et al., 2021). The projection method was ray projection from the shape model to a focal plane of TIR images. These observed images were fitted to the anticipated images calculated by the SPICE kernel using the Hayabusa2 attitude (CK) and body flame (FK). The resulting pointing accuracy was less than 10 m at the altitude of 10 km observations. The brightness temperature map on the shape model of Ryugu has been prepared for next publications as Level-3 products. The detailed map spatially resolved the temperature of shaded areas by large boulders. We found relatively hot areas caused by multiple radiations from the surroundings. The rotation axis of Ryugu is inclined about 8 degrees to the orbital plane. Therefore, it causes seasonal changes on the surface of Ryugu. Simulation results of solar radiation using the SPICE tool kit show that there are available in all-time sunlit or no sunlit areas on the polar regions of Ryugu. However, the effects of thermal radiations caused by the complex topography or boulders on the surface seem to reduce the seasonal changes of the surface temperature. For instance, TIR found hot spots in no sunlit areas of the polar region. In this presentation, we introduce the seasonal changes of the surface temperature using the Level-3 products and the temperature profile of the characteristic areas on Ryugu.