日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS04] 火星と火星衛星

2022年5月23日(月) 13:45 〜 15:15 展示場特設会場 (1) (幕張メッセ国際展示場)

コンビーナ:宮本 英昭(東京大学)、コンビーナ:今村 剛(東京大学大学院 新領域創成科学研究科)、中村 智樹(東北大学大学院理学研究科地学専攻)、コンビーナ:玄田 英典(東京工業大学 地球生命研究所)、座長:倉本 圭(北海道大学大学院理学院宇宙理学専攻)、松本 晃治(国立天文台RISE月惑星探査プロジェクト)、中村 智樹(東北大学大学院理学研究科地学専攻)、玄田 英典(東京工業大学 地球生命研究所)、宮本 英昭(東京大学)

13:45 〜 14:00

[PPS04-01] Martian Moons eXploration MMX: An overview focusing its science.

*倉本 圭1,2、川勝 康弘2藤本 正樹2、Barucci Maria Antonietta3玄田 英典4平田 成5今村 剛6、Helbert Jörn7亀田 真吾8,2、小林 正規9草野 広樹10、Lawrence David J.11松本 晃治12Michel Patrick13宮本 英昭6中川 広務14中村 智樹14小川 和律2、大嶽 久志2、尾崎 正伸2、Russell Sara15佐々木 晶16、千秋 博紀9、寺田 直樹14、Ulamec Stephan7臼井 寛裕2和田 浩二9横田 勝一郎16 (1.北海道大学、2.宇宙航空研究開発機構、3.パリ天文台、4.東京工業大学、5.会津大学、6.東京大学、7.DLR、8.立教大学、9.千葉工業大学、10.量子科学技術研究開発機構、11.ジョンズ・ホプキンス大学、12.国立天文台、13.コート・ダジュール大学、14.東北大学、15.自然史博物館、16.大阪大学)

キーワード:MMX、フォボス、ダイモス、火星大気、起源と進化

The MMX mission, which is under development by JAXA, is the world's first mission to make a round trip to the Martian system. The exploration target includes not only both Martian moons comparable to asteroids but also the Martian atmosphere and circum-Martian space. There are two leading hypotheses for the origin of the Martian moons: One is the capture of primitive carbonaceous asteroids as suggested by the reflectance spectra, and the other is the in-situ formation from a circum-Martian disk composed from ejecta generated by a giant impact onto proto-Mars inferred from the small orbital eccentricities and inclinations of both moons. Regardless of which theory is correct, the Martian moons are thought to contain information about the composition and source regions of small bodies accreted on Mars in the final stages of its formation, the processes delivering volatile materials to terrestrial planets possibly from the outer solar system, and the physicochemical state of early Mars. MMX will determine the origin of the Martian moons and decode the above records, which are important clues to understanding the formation processes of habitable planets. After the launch by an HIII rocket planned in 2024, the MMX spacecraft will reach the Martian sphere after a ~1-year cruise. During the ~3-year stay in the Martian system, MMX will observe the Martian moons and Mars including sampling from Phobos. Then it will leave the Martian system to return to Earth in 2029. The MMX spacecraft will land at two sites to collect materials with different spectral characteristics. Before the first landing, detailed observations of Phobos will be done to select landing sites that satisfy accessibility to fresh bedrock materials and safety of spacecraft landing. Using a telescopic camera (TENGOO), LIDAR, a visible multiband camera (OROCHI), and a near-infrared spectroscopic imager (MIRS), the topography and surface composition of Phobos will be revealed at high special resolution and coverage from quasi-satellite orbits around this moon. These observations, together with gamma-ray and neutron spectrometers (MEGANE) and a mass spectrum analyzer (MSA) will provide data on the composition of the Phobos which are crucial to constrain the origin of the Phobos independently of the sample analysis. A small rover will be deployed and make in-situ observations of Phobos surface, which will contribute to the understanding of the geologic context of the sampling site. The high spatial resolution data of the characteristic geological structures of Phobos will clarify the evolutionary process of the moons' surfaces. The dust detector (CMDM) will provide data that will contribute to the understanding of moons' resurfacing processes caused by impacts of micrometeorites, and will attempt to detect hypothesized dust rings along the orbit of Martian moons. Observations of Deimos will constrain the origin and geological evolution of this moon in comparison with Phobos. Observations of the Martian atmosphere will reveal the dynamics of the transport of dust and water vapor between surface reservoirs and into the upper atmosphere. MSA will be used to measure the escape flux of Martian atmospheric constituents to space to constrain the atmospheric evolution. The origin of Phobos will be firmly determined from the microstructure, mineral, chemical, and isotopic compositions of the returned sample: these data will also constrain the source region of the captured body or the moons-forming impactor. By combining the sample dating, we will reveal the timing of the capture or the giant impact, the formation and evolution of the small body before the capture, and the surface evolution over geologic history as a Martian moon. Ejected materials from young impact craters on Mars, which are likely to be mixed in Phobos samples with a small fraction, may provide us with unique constraints on the evolution and habitability of the Martian surface environment.