Japan Geoscience Union Meeting 2022

Presentation information

[E] Oral

S (Solid Earth Sciences ) » S-CG Complex & General

[S-CG43] Shallow and intermediate depth intraslab earthquakes: seismogenesis and rheology of the slab

Thu. May 26, 2022 9:00 AM - 10:30 AM 103 (International Conference Hall, Makuhari Messe)

convener:Saeko Kita(International Institute of Seismology and Earthquake Engineering, BRI), convener:Tomohiro Ohuchi(Geodynamics Research Center, Ehime University), Marina Manea(Computational Geodynamics Laboratory, Geosciences Center, National Autonomous University of Mexico), convener:Kurama Okubo(National Research Institute for Earth Science and Disaster Resilience), Chairperson:Marina Manea(Computational Geodynamics Laboratory, Geosciences Center, National Autonomous University of Mexico), Tomohiro Ohuchi(Geodynamics Research Center, Ehime University)

10:15 AM - 10:30 AM

[SCG43-12] Nanometric flow and earthquake instability

Hongyu Sun1, *Matej Pec1 (1.Massachusetts Institute of Technology)

Keywords:fault rocks, rheology, earthquake nucleation

Fault zones accommodate relative motion between tectonic blocks and control earthquake nucleation. Nanocrystalline fault rocks are ubiquitous in “principal slip zones” indicating that these materials are determining fault stability. However, the rheology of nanocrystalline fault rocks remains poorly constrained. Here, we show that such fault rocks are an order of magnitude weaker than their microcrystalline counterparts when deformed at identical experimental conditions. Weakening of the fault rocks is hence intrinsic, it occurs once nanocrystalline layers form. However, it is difficult to produce “rate weakening” behavior due to the low measured stress exponent, n, of 1.3 ± 0.4 and the low activation energy, Q, of 16 ± 14 kJ/mol implying that the material will be strongly “rate strengthening” with a weak temperature sensitivity. Failure of the fault zone nevertheless occurs once these weak layers coalesce in a kinematically favored network. This type of instability is distinct from the frictional instability used to describe crustal earthquakes but may be analogous to the shearing instability due to weak inclusions thought to be the cause of deep earthquakes.