日本地球惑星科学連合2022年大会

講演情報

[J] 口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG49] 地球惑星科学におけるレオロジーと破壊・摩擦の物理

2022年5月26日(木) 09:00 〜 10:30 304 (幕張メッセ国際会議場)

コンビーナ:東 真太郎(東京工業大学 理学院 地球惑星科学系)、コンビーナ:田阪 美樹(静岡大学 )、清水 以知子(京都大学大学院理学研究科地球惑星科学専攻)、コンビーナ:桑野 修(国立研究開発法人 海洋研究開発機構)、座長:清水 以知子(京都大学大学院理学研究科地球惑星科学専攻)

09:45 〜 10:00

[SCG49-10] 1軸引張条件下におけるマグマのX線小角散乱・回折実験

*奥村 聡1、上杉 健太朗2後藤 章夫3坂巻 竜也1松本 一久1、竹内 晃久2三宅 亮4 (1.東北大学大学院理学研究科地学専攻、2.高輝度光科学研究センター、3.東北大学東北アジア研究センター、4.京都大学大学院理学研究科地球惑星科学専攻)

キーワード:マグマ、変形、X線小角散乱、X線回折、引張試験

Magma deformation and brittle failure control the dynamics of volcanic eruptions. However, the evolution of atomic to nanometer scale microstructure in magma under deformation has not been clarified, partially because of the difficulty of observing microstructure under deformation. Here, we report a new experimental system, developed at SPring-8 (BL20XU and BL47XU), designed to observe the microstructural evolution of magma under uniaxial tension. In this experimental system, we can obtain small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) of fibrous magma simultaneously that was heated and elongated in a furnace. In this presentation, we show two results obtained using the experimental system mentioned above, i.e., the evolution of the intermediate-order structure of dacite melt based on the observation of the first sharp diffraction peak (FSDP) and the effect of nanometer scale crystals on the viscosity of andesite magma. In the first result, we elongated haplodacite melt at a temperature of ~840°C and obtained WAXD during the elongation with a rate of ∼10 μm s–1. The FSDP moved to the low Q range with deformation. This implies that the deformation resulted in an increase in the size of the ring structure in silicate network during tension. In the second result, the fiber of andesite magma was elongated at temperatures of ∼730–830°C. During heating and elongation, nanometer scale crystals formed, and their size, degree, and phase (magnetite) were monitored using SAXS and WAXD simultaneously. Based on the measured mechanical data, we investigated the effect of crystallization of the nanometer scale crystals on magma rheology and concluded that the formation of nanometer scale crystals causes only a slight increase in magma viscosity (less than one order of magnitude of melt viscosity). Additional information of atomic to nanometer scale microstructure of magma, such as the detailed structure and density fluctuation in silicate melts and the formation kinetics of nanometer scale crystals and bubbles, will be explored in future studies.