Japan Geoscience Union Meeting 2022

Presentation information

[J] Oral

S (Solid Earth Sciences ) » S-GC Geochemistry

[S-GC36] Solid Earth Geochemistry, Cosmochemistry

Tue. May 24, 2022 1:45 PM - 3:15 PM 102 (International Conference Hall, Makuhari Messe)

convener:Gen Shimoda(Geological Survey of Japan, AIST), convener:Katsuhiko Suzuki(Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology), Katsuyuki Yamashita(Graduate School of Natural Science and Technology, Okayama University), Chairperson:Katsuhiko Suzuki(Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology), Katsuyuki Yamashita(Graduate School of Natural Science and Technology, Okayama University), Akira Ishikawa(Department of Earth and Planetary Sciences, Tokyo Institute of Technology), Gen Shimoda(Geological Survey of Japan, AIST)

2:00 PM - 2:15 PM

[SGC36-02] 182W/184W of the komatiites from Dharwar and Singhbhum cratons, India: implications for the 182W isotope evolution of the mantle

*Katsuhiko Suzuki1, Madhusoodhan Satish-Kumar2, Trisrota Chaudhuri3, M. Jayananda4 (1.Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology, 2.Department of Geology, Faculty of Science, Niigata University, 3.Department of Geology, University of Calcutta, 4.Centre Earth and Space Sciences, University of Hyderabad)

Keywords:core-mantle interaction, W isotope, early evaolution of the earth

182Hf decays to 182W with a geologically short half-life of 8.9 million years. Fractionation between Hf and W occurring during the life of 182Hf leads to variation in 182W isotopes Since Hf and W are lithophile and siderophile elements, Hf is likely to have remained in the silicate melt phase, and W is preferentially removed from the silicate and partitioned to the metallic melt phase during the formation of the Earth's core. This fractionation of Hf-W is believed to have occurred before the disappearance of the 182Hf, and the negative values of μ182W (deviations of the present-day upper mantle value in ppm) have been reported to in basalts of ocean islands such as Hawaii and Samoa (e.g., Mundl et al., 2017; Takamasa et al., 2020). In contrast, most rocks originated at depths and older than 2.5 Ga show relatively uniform μ182W values of +10 to +20 (e.g., Willbold et al., 2011, Touboul et al., 2014, Liu et al., 2016, Mundl et al., 2018, Tusch et al., 2019). However, some komatiites, such as Schapenburg and Komati (both with 3.5 Ga), yield negative or have values unresolvable from 0, respectively (Touboul et al., 2012; Puchtel et al., 2018). Furthermore, Mei et al. (2019) reported μ182W values of 182W close to 0 for 3.0 Ga Anshan komatiite. Therefore, it is still highly debated as to when and how the mantle has reached the present state.

Here we report the W isotopes of 3.3 Ga Singhbhum and Dharwar komatiites from India to determine the W isotopic variations in the mantle during the period from 3.5 Ga to 3.0 Ga. As mentioned above it is a period when the komatiites with the low 182W isotopic composition were found. The chemical separation of W is the method modified from Takamasa et al. (2020), and isotope analysis was performed by MC-ICP-MS (Thermofisher Scientific, NEPUTUNE Plus). The μ182W values ranged from -0.5 to +5.6 (n=3) and from -1.4 to +5.0 (n=4) for the Singhbhum and Dharwar komatiites, respectively. These values are much lower than the range of uniform μ182W values (from +10 to +15) for older rocks than 2.5 Ga, as discussed above. This result suggests that between 3.5 and 3.0 Ga, the primitive mantle with positive μ182W values may have been already sufficiently mixed with extraterrestrial materials such as Late Veneer and/or Late Heavy Bombardment with negative μ182W values and that some domains of the mantle had the μ182W values of the present-day mantle. In other words, mantle convection may have been active as early as 3.5 Ga.