日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT19] 地球深部科学

2022年5月22日(日) 15:30 〜 17:00 展示場特設会場 (2) (幕張メッセ国際展示場)

コンビーナ:太田 健二(東京工業大学理学院地球惑星科学系)、コンビーナ:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、飯塚 毅(東京大学)、コンビーナ:土屋 旬(愛媛大学地球深部ダイナミクス研究センター)、座長:飯塚 毅(東京大学)、河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)

16:15 〜 16:30

[SIT19-10] 波形インバージョンによる南大西洋下D″領域の3次元S波速度構造推定

*大鶴 啓介1鈴木 裕輝2河合 研志1 (1.東京大学、2.東京工業大学)


キーワード:最下部マントル、波形インバージョン、アフリカLLSVP、D″領域

The D″ region is the thermal boundary layer at the lowermost several hundred kilometers of the mantle and plays an essential role in mantle dynamics. In the D″, two large low shear velocity provinces (LLSVPs) are known to exist: one beneath the Pacific and another beneath Africa. Areas of low-shear wave velocity suggest heterogeneity in temperature, chemical composition, or both put together, but the exact cause of this velocity decrease is not yet understood. Mantle circulation simulations have found that if mantle convection is driven solely by the effect of temperature, gatherings of small thermal plumes called “plume clusters” will be created, while large masses of chemical heterogeneity referred to as “thermochemical piles” will be formed if chemical heterogeneity plays a role in driving the circulation. Many previous studies have carried out whole-mantle inversions and envisaged the seismic structure of the lowermost mantle, but their horizontal resolution of around 1000 km is insufficient to distinguish between thermochemical piles and plume clusters.

In this study, we utilize a large amount of data from seismic arrays in Africa that has recently become available, as well as those from surrounding regions, and conduct waveform inversion for 3D S-wave velocity structure of the western boundary region of the African LLSVP. A total of ~3600 transverse-component broadband body-wave seismograms obtained from the IRIS datacenter are used. They include data of seismic waves from deep- and intermediate-focus earthquakes recorded at epicentral distances of 70-100 degrees. A large amount of data enables us to achieve a resolution of ~250 km horizontally and ~50 km vertically, allowing insights into the internal structure of the African LLSVP.

In the presentation, we will show the inferred 3D S-wave velocity structure of our target region along with resolution checks conducted to validate those results and discuss whether the African LLSVP is closer to the picture of thermochemical piles or to that of plume clusters.