日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT21] 惑星中心核:内部構造・形成・進化

2022年5月22日(日) 09:00 〜 10:30 103 (幕張メッセ国際会議場)

コンビーナ:寺崎 英紀(岡山大学理学部)、コンビーナ:大谷 栄治(東北大学大学院理学研究科地学専攻)、McDonough William F(Department of Earth Science and Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan)、コンビーナ:飯塚 理子(東京大学大学院理学系研究科地殻化学実験施設)、座長:寺崎 英紀(岡山大学理学部)、飯塚 理子(東京大学大学院理学系研究科地殻化学実験施設)


09:45 〜 10:00

[SIT21-04] Density deficit of the inner core revealed by a new rhenium primary pressure scale

*大谷 栄治1生田 大穣1福井 宏之2,3坂巻 竜也1、石川 大介2,3、バロン アルフレッド2,3 (1.東北大学大学院理学研究科地学専攻、2.理化学研究所、3.高輝度光科学研究センター)

キーワード:絶対圧力スケール、レニウム、内核、密度欠損、X線非弾性散乱

Our knowledge on the Earth’s core is based on comparison of laboratory measurements with geophysical and geochemical observations. One of the most important results on the Earth’s inner core is that it must contain light elements because the density of the core determined by seismological observations, is lower than the density of pure iron determined by laboratory measurements and/or theoretical calculations. However, this conclusion relies critically on an accurate pressure scale to relate laboratory generated pressures to geological pressures. Establishing such a pressure scale has been the subject of intensive research but still involves significant extrapolation and approximations, especially at higher pressures of the Earth’s core. Further, a pressure scale to multi-megabar pressures is indispensable for discussing super-Earth planets. Here, we report the first primary pressure scale extending to the multi-megabar pressures of Earth’s core by measuring acoustic phonon velocities of rhenium using inelastic X-ray scattering combined with a diamond anvil cell. Our new pressure scale agrees with previous primary scales at lower pressures and also shock compression experiments, however, it is lower than previous secondary and theoretical scales at Earth’s core pressures: previous scales overestimated laboratory pressures by at least 20% at 230GPa. Our new scale suggests the density deficit of the inner core is ~9% assuming the ICB temperature of 6000 K, doubling of the light-element content of the inner core of 3-5% estimated by previous pressure scales.