日本地球惑星科学連合2022年大会

講演情報

[J] 口頭発表

セッション記号 S (固体地球科学) » S-MP 岩石学・鉱物学

[S-MP27] 変形岩・変成岩とテクトニクス

2022年5月27日(金) 10:45 〜 12:15 102 (幕張メッセ国際会議場)

コンビーナ:中村 佳博(国立研究開発法人産業技術総合研究所 地質調査総合センター)、コンビーナ:針金 由美子(産業技術総合研究所)、座長:中村 佳博(国立研究開発法人産業技術総合研究所 地質調査総合センター)、今山 武志(岡山理科大学自然科学研究所)

11:30 〜 11:45

[SMP27-04] 沈み込みチャネル成長に関するシンプルな2D動力学モデリング

*志関 弘平1辻森 樹1 (1.東北大学)


キーワード:沈み込みチャネル、高圧メランジュ、沈み込み角度、収束速度、2次元岩石熱力学モデリング

The exhumation of eclogite or other dense high-pressure metamorphic rocks hardly relies solely on their own buoyancy; this process requires less-buoyant rocks hosting the denser rocks, or alternatively, there can be missing parameters other than buoyancy that can affect the exhumation of eclogite (e.g., Morita, Tsujimori et al. 2022 J. Petrol.). In this study, we carried out a two-dimensional numerical simulation based on the I2VIS code (Gerya and Yuen 2003 EPSL). In order to understand the geodynamics of oceanic plate subduction, we performed numerical simulation to test different input parameters including the plate convergence rate, the subduction angle, the age of subducted slab, and the presence/absence of cessation in convergence. We also evaluated the P–T paths at the top of downgoing slab, and confirmed that the paths in our different models fell within the range of the global subduction zone thermal structure and P–T condition of exhumed rocks (e.g., van Keken et al. 2018 G-Cubed). Our numerical results indicate that there are no straightforward models to explain how the high-pressure and/or ultrahigh-pressure metamorphic rocks can exhume along a subduction channel or trigger subvertical uplifting within the mantle wedge. Nevertheless, our modeling could confirm the following key factors that might affect the exhumation process of high-dense rocks in an oceanic subduction setting: (1) if the subduction angle is large, more sedimental material can be dragged into the subduction channel, which reduces the density of the mélange. In addition, the Poiseuille flow tends to be dominant. This can promote the ascent of the high-pressure metamorphic complexes toward shallower depth; (2) if the convergence rate is large, more sedimentary material can be dragged into the subduction channel, which reduces the density of the mélange. In this case, the hangingwall continental crust deforms to form a fold belt and the width of the subduction channel increases; (3) if plate convergence stops, slab rollback occurs, which can consequently promote widening of the subduction channel and/or exhumation of high-pressure metamorphic complexes. Furthermore, our model demonstrate that subduction of older and colder slab can facilitate the occurrence of slab rollback.