10:45 〜 11:00
[ACG32-06] Seasonal prediction of North American temperature extremes in the GFDL SPEAR forecast system
★Invited Papers
*Liwei Jia1,2、Thomas Delworth2、Xiaosong Yang 2、Nathaniel Johnson2、William Cooke2 (1.UCAR、2.NOAA/GFDL)
[E] 口頭発表
セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般
2023年5月22日(月) 10:45 〜 12:00 104 (幕張メッセ国際会議場)
コンビーナ:森岡 優志(海洋研究開発機構)、Hiroyuki Murakami(Geophysical Fluid Dynamics Laboratory/University Corporation for Atmospheric Research)、Takahito Kataoka、Liping Zhang、Chairperson:Liping Zhang、Takahito Kataoka、森岡 優志(海洋研究開発機構)
Climate variability on subseasonal to centennial timescales (e.g., Madden-Julian Oscillation, El Nino/Southern Oscillation (ENSO), Indian Ocean Dipole, Pacific Decadal Variability, Atlantic Multidecadal Variability, Southern Ocean Centennial Variability) has huge impacts on global socioeconomic activities by inducing extreme climate events (e.g., atmospheric and marine heatwaves/coldwaves, major hurricanes/typhoons/cyclones, and floods/droughts) and modulating their physical characteristics. Many efforts have been made to accurately understand and skillfully predict subseasonal to centennial climate variabilities using observation data and dynamical/statistical models. However, most models still undergo systematic biases in amplitude, spatial pattern, and frequency of these climate variabilities. The model biases often originate from a lack of understanding of weather and climate interactions across different spatiotemporal scales (e.g., tropical cyclones-ENSO) and incomplete representation of complex and non-linear processes in the climate system (e.g., troposphere-stratosphere coupling, atmosphere-ocean-sea ice interactions). Therefore, seamless climate modeling and observational studies across different spatiotemporal scales are indispensable. This session invites all research activities related to the subseasonal to centennial climate variabilities using observational data (e.g., satellite, ship, buoy/float, proxy data), theoretical/modeling approaches, and artificial intelligence/machine learning frameworks. The research topics through analyzing Coupled Model Intercomparison Project Phase 6 (CMIP6) are also welcomed.
10:45 〜 11:00
*Liwei Jia1,2、Thomas Delworth2、Xiaosong Yang 2、Nathaniel Johnson2、William Cooke2 (1.UCAR、2.NOAA/GFDL)
11:00 〜 11:15
*馬場 雄也1 (1.海洋研究開発機構)
11:15 〜 11:30
*林 未知也1 (1.国立環境研究所)
11:30 〜 11:45
11:45 〜 12:00
*Stephen G Yeager1、Ping Chang2、Gokhan Danabasoglu1、Lixin Wu3、Nan Rosenbloom1、Qiuying Zhang2、Frederic Castruccio1、Abishek Gopal2、Cameron Rencurrel2 (1.National Center for Atmospheric Research、2.Texas A&M University、3.Ocean University of China)