日本地球惑星科学連合2023年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS04] 台風研究の新展開~過去・現在・未来

2023年5月23日(火) 09:00 〜 10:15 103 (幕張メッセ国際会議場)

コンビーナ:辻野 智紀(気象研究所)、金田 幸恵(名古屋大学宇宙地球環境研究所)、伊藤 耕介(琉球大学)、宮本 佳明(慶應義塾大学 環境情報学部)、座長:辻野 智紀(気象研究所)、金田 幸恵(名古屋大学宇宙地球環境研究所)

09:45 〜 10:00

[AAS04-04] Three-dimensional Fujiwhara effect for binary tropical cyclones

*伊藤 耕介1,2平野 創一朗1、Lee Jae-Deok3、Chan Johnny4 (1.琉球大学、2.横浜国立大学、3.公州大学校、4.香港城市大学)

キーワード:台風、藤原効果

Recent idealized simulations have shown that a system of binary tropical cyclones (TCs) induces vertical wind shear (VWS) in each TC, which can subsequently modify the tracks of these TCs through asymmetric diabatic heating. This study investigates these three-dimensional effects in the western North Pacific using the best track and ERA5 reanalysis data. The TC motion was found to deviate systematically from the steering flow. The direction of deviation is clockwise and repelling with respect to the midpoint of the binary TCs with a separation distance of more than 1000 km. The large-scale upper-level anticyclonic and lower-level cyclonic circulations serve as the VWS for each TC in a manner consistent with the idealized simulations. The VWS of a TC tends to be directed to the rear-left quadrant from the direction of the counterpart TC, where the maxima of rainfall and diabatic heating are observed. The potential vorticity budget analysis shows that the actual TC motion is modulated by the diabatic heating asymmetry that offsets the counterclockwise and approaching motion owing to horizontal advection when the separation distance of the binary TCs is 1000–2000 km. With a small separation distance (<1000 km), horizontal advection becomes significant, but the impact of diabatic heating asymmetry is not negligible. The above mentioned features are robust, while there are some dependencies on the TC intensities, size, circulation, duration, and geographical location. This research sheds light on the motion of binary TCs from the three-dimensional perspective that has not been previously explained by a two-dimensional barotropic framework.