Japan Geoscience Union Meeting 2023

Presentation information

[E] Oral

A (Atmospheric and Hydrospheric Sciences ) » A-AS Atmospheric Sciences, Meteorology & Atmospheric Environment

[A-AS04] Advances in Tropical Cyclone Research: Past, Present, and Future

Tue. May 23, 2023 9:00 AM - 10:15 AM 103 (International Conference Hall, Makuhari Messe)

convener:Satoki Tsujino(Meteorological Research Institute), Sachie Kanada(Nagoya University), Kosuke Ito(University of the Ryukyus), Yoshiaki Miyamoto(Faculty of Environment and Information Studies, Keio University), Chairperson:Satoki Tsujino(Meteorological Research Institute), Sachie Kanada(Nagoya University)

9:45 AM - 10:00 AM

[AAS04-04] Three-dimensional Fujiwhara effect for binary tropical cyclones

*Kosuke Ito1,2, Soichiro Hirano1, Jae-Deok Lee3, Johnny C. L. Chan4 (1.University of the Ryukyus, 2.Yokohama National University, 3.Kongju National University, 4.City University of Hong Kong)

Keywords:tropical cyclones, Fujiwhara effect

Recent idealized simulations have shown that a system of binary tropical cyclones (TCs) induces vertical wind shear (VWS) in each TC, which can subsequently modify the tracks of these TCs through asymmetric diabatic heating. This study investigates these three-dimensional effects in the western North Pacific using the best track and ERA5 reanalysis data. The TC motion was found to deviate systematically from the steering flow. The direction of deviation is clockwise and repelling with respect to the midpoint of the binary TCs with a separation distance of more than 1000 km. The large-scale upper-level anticyclonic and lower-level cyclonic circulations serve as the VWS for each TC in a manner consistent with the idealized simulations. The VWS of a TC tends to be directed to the rear-left quadrant from the direction of the counterpart TC, where the maxima of rainfall and diabatic heating are observed. The potential vorticity budget analysis shows that the actual TC motion is modulated by the diabatic heating asymmetry that offsets the counterclockwise and approaching motion owing to horizontal advection when the separation distance of the binary TCs is 1000–2000 km. With a small separation distance (<1000 km), horizontal advection becomes significant, but the impact of diabatic heating asymmetry is not negligible. The above mentioned features are robust, while there are some dependencies on the TC intensities, size, circulation, duration, and geographical location. This research sheds light on the motion of binary TCs from the three-dimensional perspective that has not been previously explained by a two-dimensional barotropic framework.