日本地球惑星科学連合2023年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG33] 熱帯におけるマルチスケール大気海洋相互作用

2023年5月23日(火) 15:30 〜 16:45 104 (幕張メッセ国際会議場)

コンビーナ:堀井 孝憲(国立研究開発法人海洋研究開発機構)、釜江 陽一(筑波大学生命環境系)、清木 亜矢子(海洋研究開発機構)、時長 宏樹(九州大学応用力学研究所)、座長:釜江 陽一(筑波大学生命環境系)、清木 亜矢子(海洋研究開発機構)

16:00 〜 16:15

[ACG33-08] Interactions between phytoplankton and ENSO simulated in a high-resolution coupled physical-biological ocean model

*小池 海人1笹井 義一2東塚 知己3 (1.東京大学理学部地球惑星物理学科、2.海洋研究開発機構、3.東京大学大学院理学系研究科地球惑星科学専攻 )


キーワード:エルニーニョ・南方振動、植物プランクトン、短波放射

The El Niño-Southern Oscillation (ENSO) is the major interannual climate mode in the tropical Pacific and has strong impacts on the global climate through teleconnections. It is also known to influence biological activity including phytoplankton in the eastern equatorial Pacific by modulating nutrient supply by equatorial upwelling. Since absorption of penetrative shortwave radiation by chlorophyll of phytoplankton warms the upper ocean, this may feedback onto sea surface temperature (SST) anomalies associated with the ENSO. However, the relative importance of this feedback has not been quantified using a high-resolution coupled physical-biological ocean model. Using outputs from an ecosystem model embedded in an eddy-resolving ocean general circulation model, this study attempts to quantify the interactions between phytoplankton and ENSO. In agreement with observations, phytoplankton concentration decreases anomalously near the surface associated with a decrease in nutrient concentration during El Niño and vice versa during La Niña. As a result, less amount of shortwave radiation is absorbed by the surface mixed layer during El Niño and the absorption increases anomalously during La Niña. When integrated over the development phase from March to December, the contribution from phytoplankton concentration anomalies damps positive SST anomalies associated with El Niño by 1.0°C, which is about 50% of the damping by the SST-cloud-shortwave radiation feedback. On the other hand, during La Niña, the negative feedback associated with phytoplankton concentration anomalies is almost comparable with the SST-cloud-shortwave radiation feedback and contributes to 1.0°C anomalous warming when integrated over the development phase. Thus, this study suggests the possible importance of considering the physical-biological feedback for a more realistic simulation and a more accurate prediction of the ENSO.