日本地球惑星科学連合2023年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG39] 陸域生態系の物質循環

2023年5月25日(木) 15:30 〜 16:45 201A (幕張メッセ国際会議場)

コンビーナ:加藤 知道(北海道大学農学研究院)、寺本 宗正(鳥取大学乾燥地研究センター)、伊勢 武史(京都大学フィールド科学教育研究センター)、市井 和仁(千葉大学)、座長:伊勢 武史(京都大学フィールド科学教育研究センター)


16:15 〜 16:30

[ACG39-10] Effects of soil properties in estimating soil respiration and methane absorption

*山貫 緋称1市井 和仁1山本 雄平1寺本 宗正2孫 力飛3、小嵐 淳4、安藤 麻里子4永野 博彦5平野 高司6高木 健太郎6、石田 祐宣7高木 正博8、近藤 俊明9高橋 善幸3、梁 乃申3 (1.千葉大学環境リモートセンシング研究センター、2.鳥取大学乾燥地研究センター、3.国立環境研究所、4.日本原子力研究開発機構、5.新潟大学、6.北海道大学、7.弘前大学、8.宮崎大学、9.国際農林水産業研究センター)


キーワード:土壌呼吸、メタン吸収、土壌特性、炭素14、機械学習

Soil exchanges greenhouse gases (GHGs) such as CO2 and CH4 with near-surface atmosphere, and these exchanges are one of the essential components of soil CO2 and CH4 cycles. In general, forest soils act as a CO2 source via emission through soil respiration and CH4 sink via absorption by the soil. Various efforts have been made to observe soil CO2/CH4 fluxes, analyze their mechanisms, and upscale them. However, due to insufficient observation and understanding, significant uncertainties remain in their spatio-temporal variations and their underlying mechanisms. For example, various efforts on upscaling soil respiration have been conducted using machine-learning models or semi-empirical models, and further improvements were expected by denser observation networks and/or adding parameters relating to soil characteristics.

In this study, we analyzed the effects of observed soil properties on explaining spatio-temporal variations in observed soil respiration and CH4 absorption. With the largest soil respiration observation network across Asia developed and maintained by National Institute for Environmental Studies (NIES) and several observed soil properties such as 14C, organic matter properties, and mineral properties by Japan Atomic Energy Agency (JAEA), we estimated soil respiration and methane absorption across Japan based on random forest regression. Adding 14C data to the explanatory variables for CO2 estimation improved the accuracy of the estimation compared to the model based on meteorological data only. Mineral properties data were important for CH4 estimation, and the importance of mineral properties data as explanatory variables was greater than those of soil meteorological data such as temperature and soil moisture. We revealed that soil properties, in addition to meteorological data, are essential for estimating soil CO2/CH4 fluxes.