日本地球惑星科学連合2023年大会

講演情報

[E] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI26] Data assimilation: A fundamental approach in geosciences

2023年5月22日(月) 09:00 〜 10:30 301B (幕張メッセ国際会議場)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)、加納 将行(東北大学理学研究科)、座長:加納 将行(東北大学理学研究科)、中野 慎也(情報・システム研究機構 統計数理研究所)

09:35 〜 09:50

[MGI26-03] Including cross correlations between the forecast and observation errors in the ensemble Kalman filter

*大石 俊1、小林 勇毅2三好 建正1 (1.理化学研究所 計算科学研究センター、2.京都大学)

キーワード:データ同化、アンサンブルカルマンフィルター、相互相関

The Kalman filter is an unbiased minimum variance estimator under an assumption of no cross correlations between the forecast and observation errors. However, some data assimilation systems use observations like satellite retrievals and sea surface temperature analysis data which may not be independent of forecasts, even though the forecasts may come from an independent system. These observations may contain errors correlated with the forecast errors. This study investigates the impact of including cross correlations between the observation and forecast errors in the ensemble Kalman filter by perfect-model twin experiments using the Lorenz-96 model. The observation errors are generated by including the forecast errors, i.e., a mixture of random numbers and the forecast errors in the observation space. We derived the ensemble transform Kalman filter (ETKF) with the cross correlations (ETKFCC) and performed experiments to compare the ETKFCC and the standard ETKF without the cross correlations.
The results show that positive (negative) cross correlations result in lower (higher) analysis accuracy because the forecasts and observations tend to be located on the same (opposite) side relative to the true values for the positive (negative) correlation. The sensitivity experiments demonstrate that the ETKFCC is more accurate than the standard ETKF for both positive and negative correlations.