日本地球惑星科学連合2023年大会

講演情報

[J] オンラインポスター発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI31] 情報地球惑星科学と大量データ処理

2023年5月25日(木) 10:45 〜 12:15 オンラインポスターZoom会場 (26) (オンラインポスター)

コンビーナ:村田 健史(情報通信研究機構)、野々垣 進(国立研究開発法人 産業技術総合研究所 地質調査総合センター)、本田 理恵(愛媛大学データサイエンスセンター)、深沢 圭一郎(京都大学学術情報メディアセンター)

現地ポスター発表開催日時 (2023/5/26 17:15-18:45)

10:45 〜 12:15

[MGI31-P03] ハイパースペクトル衛星画像のバンド選択による鉱物含有率推定法の精度評価

*岸本 将英1久保 大樹1小池 克明1 (1.京都大学大学院工学研究科 都市社会工学専攻地殻環境工学講座)


キーワード:リモートセンシング、Hyperion衛星画像、反射率スペクトル、スペクトル分離、Cupriteフィールド(アメリカ合衆国)

Remote sensing using Earth observation satellites has been widely applied to detect signs of metallic deposits and hydrothermally altered minerals, because it can detect them in wide areas. With many observation wavelengths (bands) and a large amount of information, Hyperspectral satellite imagery can identify surface materials accurately. However, the areas covered by hyperspectral satellite imagery is still limited and much less than multispectral imagery with only several bands. Therefore, identification accuracy of minerals by multispectral imagery needs to be equivalent to that by hyperspectral imagery. For this, this study aims to develop a band selection method that enables to estimate mineral content with high accuracy. A feature selection technique, which has been developed in the field of machine learning, was applied to our method.
As a case study, one scene of EO-1 Hyperion image, a representative hyperspectral satellite imagery, was used for mapping mineral distributions in the Cuprite area in Nevada, USA where the surface minerals have been studied in detail through geological surveys and remote sensing analyses. Therefore, this area is suitable for verifying the accuracy of the proposed method. Four spectral unmixing methods were targeted to verify the mineral estimation accuracy by the band selection. Four main minerals: alunite, calcite, muscovite, and kaolin were selected as the endmembers. As a result, the optimal band selection method was specified, which brought the high mineral estimation accuracy almost equivalent to the result by the hyperspectral image analysis. Consequently, our band selection method was demonstrated to be effective.