日本地球惑星科学連合2023年大会

講演情報

[J] オンラインポスター発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS17] 地球科学としての海洋プラスチック

2023年5月26日(金) 15:30 〜 17:00 オンラインポスターZoom会場 (12) (オンラインポスター)

コンビーナ:磯辺 篤彦(九州大学応用力学研究所)、川村 喜一郎(山口大学)、岡崎 裕典(九州大学大学院理学研究院地球惑星科学部門)、土屋 正史(国立研究開発法人海洋研究開発機構 地球環境部門)

現地ポスター発表開催日時 (2023/5/26 17:15-18:45)

15:30 〜 17:00

[MIS17-P03] 市民科学と深層学習による街中プラスチックごみ量の推定

室屋 龍之介1、*加古 真一郎1松岡 大祐2磯辺 篤彦3 (1.鹿児島大学大学院理工学研究科、2.海洋研究開発機構、3.九州大学応用力学研究所)

キーワード:街中プラスチックごみ、深層学習、市民科学、画像解析

Approximately 80% of plastic litter entering the ocean is of terrestrial origin (Eunomia, 2016). Most of these are litter related to our daily activities that was mismanaged and discharged into the ocean via rivers (Lebreton et al., 2017). Currently, however, there is no method to accurately and objectively monitor and quantify the amount of plastic litter in terrestrial areas, in particular in the city where the source of marine plastic pollution. Existing methods for monitoring plastic litter include a quantification method for beach litter that combines drones and webcams with deep learning (Kako et al., 2022, Hidaka et al., 2022), but from the perspective of safety and privacy protection, it is difficult to apply these methods to monitoring litter on land, particularly litter in the streets. In this study, we attempted to establish a method to quantify the amount of litter in the city by combining images taken by ordinary citizens using a smartphone application and deep learning, with the aim of constructing a citizen-participatory litter monitoring network. Based on visual observations, an image analysis method capable of detecting six types of litter (can, plastic bottle, plastic bag, cigarette box, cigarette butt, and mask) in the city was constructed. The results of the accuracy validation through the visual observation showed that our image processing method based on deep learning is possible to detect and quantify 6 types of litter in the city with a high precision and recall rates of more than 70%.