日本地球惑星科学連合2023年大会

講演情報

[J] オンラインポスター発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS24] 大気電気学:大気電気学分野での高エネルギー現象

2023年5月22日(月) 13:45 〜 15:15 オンラインポスターZoom会場 (7) (オンラインポスター)

コンビーナ:芳原 容英(電気通信大学 大学院情報理工学研究科)、長門 研吉(高知工業高等専門学校)

現地ポスター発表開催日時 (2023/5/21 17:15-18:45)

13:45 〜 15:15

[MIS24-P05] 密度準拠クラスタリングを用いた気象用フェーズドアレイレーダのための降水セルの自動検知及び追尾手法

*麥倉 孝司1菊池 博史1芳原 容英1牛尾 知雄2 (1.電気通信大学、2.大阪大学)

キーワード:気象レーダ、Density-Based Spatial Clustering of Application with Noise

In recent years, extreme weather phenomena such as torrential rains, and wind gusts have been occurring frequently in Japan. These weather phenomena are brought about by short-term, locally generated storm. In order to observe them in detail, Phased Array Weather Radar (PAWR) has been developed.
We used Density-Based Spatial Clustering of Application with Noise (DBSCAN) to identify cells in areas where the radar reflectivity factor observed by PAWR is more than the threshold of 15 dBZ, and tracks the cells based on their center of gravity. The DBSCAN method is based on the center-of-gravity position of a cell. However, this method has a problem that when a cell fusion occurs, it is misidentified as the development of a cumulonimbus cloud.
In this study, a strong precipitation area (precipitation core) is also defined inside a precipitation cell, and the core is discriminated and tracked. A higher threshold > 45dBZ is used to discriminate cores. The information from the precipitation cores assists in the analysis of precipitation cells and detects and predicts the location of heavy rainfall in more detail. The proposed method is also effective for the future development of heavy rainfall forecasting technology using deep learning.