日本地球惑星科学連合2023年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM09] Space Weather and Space Climate

2023年5月25日(木) 15:30 〜 16:30 101 (幕張メッセ国際会議場)

コンビーナ:片岡 龍峰(国立極地研究所)、Antti A Pulkkinen(NASA Goddard Space Flight Center)、Mary Aronne中村 紗都子(名古屋大学宇宙地球環境研究所)、座長:中村 紗都子(名古屋大学宇宙地球環境研究所)、片岡 龍峰(国立極地研究所)

16:00 〜 16:15

[PEM09-20] Machine learning emulator for physics-based prediction of ionospheric response to solar wind variations

*片岡 龍峰1中野 慎也2藤田 茂2 (1.国立極地研究所、2.統計数理研究所)

Physics-based simulations are important for elucidating the fundamental mechanisms behind the time-varying complex ionospheric conditions, such as field-aligned currents (FACs) and plasma convection patterns, against unprecedented solar wind variations incidents in the Earth’s magnetosphere. However, to perform a huge parameter survey for understanding the nonlinear solar wind density dependence of the FAC and convection patterns, for example, a large-scale cluster computer is not fast enough to run state-of-the-art global magnetohydrodynamic (MHD) simulations. Here we report the impressive performance of a machine-learning based surrogate model for the ionospheric outputs of a global MHD simulation, using the reservoir computing technique called echo state network (ESN). The trained ESN-based emulator is exceptionally fast to perform the parameter survey, suggesting a missing solar wind density dependence of the ionospheric polar cap potential. We discuss future directions including the promising application for the space weather forecast.