11:10 〜 11:25
[PEM13-02] Van Allen Probes and GPS observations of the outer radiation belt electron dynamics during sheath regions of coronal mass ejections
キーワード:Earth, radiation belt, electrons
Turbulent and compressed sheath regions ahead of interplanetary coronal mass ejections are key drivers of dramatic changes in the electron fluxes in the Earth’s outer radiation belt. They are also associated with elevated wave activity in the inner magnetosphere. These changes in electron fluxes can occur on timescales of tens of minutes that are not readily captured by a two-satellite mission such as the Van Allen Probes due to long revisit times. The recently released Global Positioning System (GPS) data set, on the other hand, provides a larger number of measurements at a given location within a given amount of time, owing to the many satellites in the constellation. In our statistical study on the impact of sheath regions on the outer radiation belt, we investigated events in 2012-2018 at timescales of 6 hours (Van Allen Probes data) and 30 minutes (GPS data). The study showed that the flux response to sheaths as reported from Van Allen Probes observations is reproduced by GPS data. We highlight that the shorter timescale allowed by GPS data further confirms that the energy and L-shell dependent flux changes are associated with the sheaths rather than the following ejecta. Additionally, we studied the electron phase space density, which is a key quantity for identifying non-adiabatic electron dynamics. This showed that electrons are effectively accelerated only during geoeffective sheaths (SYM-H < -30 nT). Outer belt losses are common for all sheaths, and the lost electrons are replenished during the early ejecta.