日本地球惑星科学連合2023年大会

講演情報

[E] オンラインポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM14] Frontiers in solar physics

2023年5月24日(水) 10:45 〜 12:15 オンラインポスターZoom会場 (2) (オンラインポスター)

コンビーナ:鳥海 森(宇宙航空研究開発機構 宇宙科学研究所)、横山 央明(京都大学大学院理学研究科)、今田 晋亮(東京大学理学系研究科地球惑星科学専攻)、Sterling Alphonse(NASA/MSFC)

現地ポスター発表開催日時 (2023/5/23 17:15-18:45)

10:45 〜 12:15

[PEM14-P07] Comprehensive simulation of solar wind formation from the solar interior

*飯島 陽久1松本 琢磨1,2堀田 英之3今田 晋亮4 (1.名古屋大学、2.国立天文台、3.千葉大学、4.東京大学)

キーワード:太陽風、太陽コロナ、磁気リコネクション

We present a simulation of the solar wind acceleration starting from the thermal convection in the solar interior. The turbulent plasma motion and small-scale magnetism in the solar convection zone are promising drivers of the supersonic solar wind. Because of the significant difference in the spatiotemporal scale, a wide variety of physical processes has been suggested as possible origins of the solar wind under empirical assumptions.

For the first time, we conducted a comprehensive simulation of the solar wind emanating from the edge of solar coronal holes. We included all the most important physical processes, such as the photospheric radiative transfer, the realistic opacity and the equation of states, optically thin radiative cooling, and the field-aligned thermal conduction in the low-dense atmosphere. The computational resource by RIKEN Fugaku allowed us to trace the energy and mass flow from the solar interior to the solar wind resolving energetically essential scales.

Turbulent thermal convection in the numerical domain spontaneously generates complex magnetic structures and excites various plasma waves. The simulated dense and slow solar wind exhibits time variations from minutes to days, including magnetic polarity reversals called magnetic switchbacks. The simulated photospheric field strength, coronal density, and mass-loss rate reasonably agree with observational constraints. The detailed analysis shows the energy input from closed coronal loops accounts for a large portion of solar wind energy, suggesting the importance of magnetic reconnection in solar wind formation.