日本地球惑星科学連合2023年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM17] 宇宙プラズマ理論・シミュレーション

2023年5月22日(月) 13:45 〜 15:00 101 (幕張メッセ国際会議場)

コンビーナ:天野 孝伸(東京大学 地球惑星科学専攻)、三宅 洋平(神戸大学大学院システム情報学研究科)、梅田 隆行(名古屋大学 宇宙地球環境研究所)、中村 匡(福井県立大学)、座長:諌山 翔伍(九州大学総合理工学研究院)、天野 孝伸(東京大学 地球惑星科学専攻)

13:45 〜 14:00

[PEM17-06] Demonstration of laser wake field accleration of protons

*諌山 翔伍1、蔵満 康浩2、安部 勇輝3、南 卓海2、境 健太郎2、兼安 祐実3、福田 裕仁4、陳 仕宏5、金崎 真聡6、浅井 孝文6、田中 周太7、山ノ井 航平3 (1.九州大学総合理工学研究院、2.大阪大学大学院工学研究科、3.大阪大学レーザー科学研究所、4.量子科学技術研究開発機構関西光科学研究所、5.台湾国立中央大学、6.神戸大学大学院海事科学研究科、7.青山学院大学)

キーワード:航跡場加速、相対論的プロトン生成

The laser-plasma interaction can generate high acceleration fields, which exceeds those of the conventional accelerators by orders of magnitude. Due to this excellent feature of large acceleration gradient, laser-driven proton acceleration possesses high potential to realize the compact high energy proton sources. Proton beams with energies beyond 100 MeV is necessary for a wide range of applications, including modern cancer therapies [1]. In the experiment, the currently reported highest proton energy is 94 MeV by Higginson et al. [2], 93 MeV by Kim et al. [3], and 85 MeV by Wagner et al. [4]. The accleration mechanism of Radiation Pressure Acceleration (RPA) and Target Normal Sheath Acceleration (TNSA) are used in these experiments. However, these acceleration mechanisms have limitations. In the RPA, electrons and ions/protons are acclerated simultaneously by laser light pressure. This accleration will be terminated when the target is curved and deformed due to the non-uniformity of the light pressure in the direction transverse to the laser traveling direction and finally the target is broken. In the TNSA, protons are acclerated by a sheath electric field created by hot electrons but the sheath electric fifeld is limited within the debye length. Therefore, it is difficult to accelerate protons over long time and long distance by the conventional acccleration methods.
Laser Wakefeild Acceleration (LWFA) of electrons has been experimentally demonstrated to produce a few GeV electrons. In the LWFA, the electrons are trapped in the plasma wave potential and synchronously acclerated by the propagating palsma wave (wakefield) over long time and distance. Therefore, the wakefield accleration has a potential which enhances the proton energy over 100 MeV.
We conducted the experiment to demonstrate the LWFA of protons by using J-KAREN laser (KPSI). To realize the lwfa of protons, the propagation speed of wakefield should be reduced by using the intermediate density (a few times of the critical density) target so that the heavy protons are trapped by the wakefield potential. In our experiment, we used the plastic (CH) foam shape target which density is about ten time lower than the usual solid density CH target. In this presentation, we will show the preliminary results of the experiment and discuss the accleration process by comparing with the simulation resutls.

[1] S. V. Bulanov and V. S. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002).
[2] A. Higginson et al., Nat. Com., 9 724, 2018.
[3] I. J. Kim et al., Phys. Plasmas, 23 070701, 2016.
[4] F. Wagner et al., Phys. Rev. Lett., 116 205002, 2016.