日本地球惑星科学連合2023年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM17] 宇宙プラズマ理論・シミュレーション

2023年5月22日(月) 13:45 〜 15:00 101 (幕張メッセ国際会議場)

コンビーナ:天野 孝伸(東京大学 地球惑星科学専攻)、三宅 洋平(神戸大学大学院システム情報学研究科)、梅田 隆行(名古屋大学 宇宙地球環境研究所)、中村 匡(福井県立大学)、座長:諌山 翔伍(九州大学総合理工学研究院)、天野 孝伸(東京大学 地球惑星科学専攻)

14:15 〜 14:30

[PEM17-08] 非相対論的高マッハ数斜め衝撃波における電子の反射

*松本 洋介1天野 孝伸2 (1.千葉大学国際高等研究基幹、2.東京大学大学院理学系研究科)

キーワード:衝撃波、電子加速、PICシミュレーション

Electron cosmic ray acceleration at supernova remnant (SNR) shocks is one of the outstanding issues in astrophysics due to the difficulty of electrons being subject to the diffusive shock acceleration. The so-called electron injection problem is the central part of our problem, which is tackled by ab-initio particle-in-cell (PIC) simulations. Recently, the injection has been described in PIC simulations of quasi-perpendicular high Mach number shocks (Xu et al., 2020; Kumar & Reville, 2021; Morris et al., 2022; Bohdan et al., 2022). In oblique shocks, electrons are mirror reflected from the shock front after undergoing a preheating process through the Buneman instability. Due to the quasi-perpendicular geometry, the reflected particles have relativistic energies and sufficient energy density to excite electromagnetic and electrostatic waves in the upstream region. These excited waves are crucial for scattering escaping particles and injecting them into the cyclic Fermi acceleration process.

We study such electron reflections for different shock speeds using a newly developed PIC simulation code adapted to the Fugaku supercomputer. With our two-dimensional (2D) load-balanced simulation code, we could follow the long-term evolution and thus track the escaping electrons in the upstream region. With a shock angle of 70 degrees, we find that the Buneman instability is excited with large amplitudes at the leading edge of the foot for shock speeds down to 10% of the speed of light. Although the energy gain of the particles from the Buneman instability is limited in such a truly non-relativistic regime, it plays a crucial role in pushing the particle's pitch angle closer to 90 degrees. The resulting high-pitch angle particles are subject to further mirror reflection at the shock front and thus have an efficient reflection rate even in the high Mach number shocks. In this presentation, we describe the results of 2D PIC simulations, focusing on electron reflection and its implications for realistic SNR shock speeds.