3:30 PM - 3:45 PM
[PPS04-01] EnVision: Understanding Why Earth's Closest Neighbor is so Different
★Invited Papers
Keywords:Venus, Atmosphere, Surface and Interior Processes, Orbiter Mission
The mission design needs to accommodate the operation of the science instruments, namely VenSAR (standard, stereo, polarimetry, HiRes, altimetry, nadir, near-nadir and off-nadir radiometry modes), SRS (high and low density modes), VenSpec-M, VenSpec-H (cooling and nominal), VenSpec-U (Nominal and SNR- limited modes) and Radio Science Experiment (gravity experiment and radio-occultation experiment) such as to achieve the mission objectives in terms of surface coverage and repeated observations, while taking into account the constraints posed by the spacecraft design (e.g. wheel offloading manœuver duration and frequency, slew manoeuvers for pointing, mass memory capacity constraints, thermal and power constraints), the instrument design (e.g. VenSpec-M operates on the night side, VenSpec-U operates on the day side, cooling of VenSpec-H is required) and mission boundaries (the baseline science duration is six Venus cycles and starts in 1st half of 2035).
The payload reference operations scenario simulation demonstrates that all identified surface targets can be imaged with VenSAR, with a performance fully compliant with the science requirements. The first two cycles allow imaging once 80% of the identified Regions of Interest (RoIs) at 30 m resolution. The following two cycles are mostly devoted to 2nd observations of these areas for stereo-topography mapping and the two last cycles to 3rd observations of the “activity” type. Dual polarization and high resolution SAR observations can be performed at any longitude at least once across the 6 cycles. Our strategy is to obtain the widest range of data types that enables us to put the highest resolution datasets into regional and global context. Similarly, understanding atmospheric processes requires a combination of global-scale mapping with targeted observations resolving smaller-scale processes.