日本地球惑星科学連合2024年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS10] 成層圏・対流圏 (大気圏) 過程とその気候への影響

2024年5月28日(火) 13:45 〜 15:15 104 (幕張メッセ国際会議場)

コンビーナ:江口 菜穂(九州大学 応用力学研究所)、野口 峻佑(九州大学 理学研究院 地球惑星科学部門)、原田 やよい(気象研究所)、田口 正和(愛知教育大学)、座長:江口 菜穂(九州大学 応用力学研究所)、田口 正和(愛知教育大学)



13:45 〜 14:00

[AAS10-01] GCM studies on the Venus atmosphre

★Invited Papers

*杉本 憲彦1藤澤 由貴子2小守 信正2安藤 紘基4高木 征弘4樫村 博基3、松田 佳久5 (1.慶應義塾大学 法学部 日吉物理学教室、2.慶應義塾大学 自然科学研究教育センター、3.神戸大学 理学研究科、4.京都産業大学 理学部、5.東京学芸大学 宇宙地球科学分野)

キーワード:金星大気、スーパーローテーション、大気大循環モデル、データ同化、大気重力波

We have developed the Venusian general circulation model (GCM), AFES-Venus (Atmospheric GCM for the Earth Simulator for Venus) [1, 2] and the data assimilation system based on the Local Ensemble Transform Kalman Filter (LETKF), ALEDAS-V (AFES-LETKF data assimilation system for Venus) [3]. Here, we will introduce important recent results of AFES-Venus and ALEDAS-V.
AFES-Venus reproduced the cold collar in the polar region [4], the planetary-scale streak structure observed by Akatsuki infrared (IR2) camera [5], a fully developed super-rotation [6], and spontaneous gravity waves radiated from the thermal tides [7]. Recently, by improving the profiles of static stability and solar heating, the thermal tides [8] and the planetary-scale short periods (Kelvin and Rossby) waves [9] consistent with observations are reproduced. We also checked how the super-rotation depends on the magnitude of horizontal hyper diffusion with medium and high resolutions [10].
ALEDAS-V improved the horizontal structures of thermal tides with the data assimilation of horizontal winds derived by cloud tracking of ultra-violet images from Venus Express [11] and Akatsuki [12]. Although the observed horizontal winds are limited to low latitudes on the day side, the zonal-mean zonal winds and temperature are also modified globally [12]. We have also conducted observing system simulation experiments (OSSEs) assuming Akatsuki Longwave Infrared Camera (LIR) observations [13].
References: [1] Sugimoto N. et al. (2014) JGR-Planets, 119, 1950–1968. [2] Sugimoto N. et al. (2014) GRL, 41, 7461–7467. [3] Sugimoto N. et al. (2017) Sci. Rep.. 7, 9321. [4] Ando H. et al. (2016) Nature Comm., 7, 10398. [5] Kashimura H. et al. (2019) Nature Comm., 10, 23. [6] Sugimoto N. et al. (2019) GRL, 46, 1776–1784. [7] Sugimoto N. et al. (2021) Nature Comm., 12, 3682. [8] Suzuki A. et al. (2022) JGR-Planets, 127, 7243. [9] Takagi M. et al. (2022) JGR-Planets, 127, 7164. [10] Sugimoto N. et al. (2023) Earth, Planets and Space, 75, 44. [11] Sugimoto N. et al. (2019) GRL, 46, 4573–4580. [12] Fujisawa Y. et al. (2022) Sci. Rep., 12, 14577. [13] Sugimoto N. et al. (2022) Geoscience Lett., 9, 44.