日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG35] グローバル炭素循環の観測と解析

2024年5月28日(火) 09:00 〜 10:30 301A (幕張メッセ国際会議場)

コンビーナ:市井 和仁(千葉大学)、Patra Prabir(Research Institute for Global Change, JAMSTEC)、伊藤 昭彦(東京大学)、座長:市井 和仁(千葉大学)

10:15 〜 10:30

[ACG35-06] Data-driven estimation of soil CH4 absorption in Japan

*山貫 緋称1市井 和仁1山本 雄平1寺本 宗正2孫 力飛3、小嵐 淳4、安藤 麻里子4永野 博彦5平野 高司6高木 健太郎6、石田 祐宣7高木 正博8、近藤 俊明9高橋 善幸3、梁 乃申3 (1.千葉大学環境リモートセンシング研究センター、2.鳥取大学乾燥地研究センター、3.国立環境研究所、4.日本原子力研究開発機構、5.新潟大学、6.北海道大学、7.弘前大学、8.宮崎大学、9.国際農林水産業研究センター)

キーワード:メタン吸収、機械学習、リモートセンシング、広域推定

Accurate prediction of atmospheric greenhouse gases (GHGs) concentrations is important for understanding climate change such as global warming. Forest soils are considered a sink for CH4, which has 28 times the greenhouse effect of CO2. Still, a lack of observational data makes it unclear whether the absorption capability will be maintained with long-term warming. Therefore, accurately estimating the CH4 sink of forest soils is crucial in predicting future climate change. So far, a field observation network for continuous automatic measurement of soil CH4 absorption is being developed in Asia, and it has become clear that soil CH4 absorption capability and global warming response vary greatly from region to region. Spatiotemporal variations in soil CH4 absorption are considered to be influenced not only by climate but also by the physical and chemical properties of soils. In this study, we estimated soil CH4 absorption in Japan by applying a machine learning method to data from the largest soil CH4 absorption observation network in Asia, which has been developed and conducted by National Institute for Environmental Studies (NIES) using the same observation methods, soil properties, organic carbon properties, and microbial properties obtained by Japan Atomic Energy Agency (JAEA) and other organizations, and satellite observation data.