日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-HW 水文・陸水・地下水学・水環境

[A-HW18] 水循環・水環境

2024年5月29日(水) 09:00 〜 10:30 201A (幕張メッセ国際会議場)

コンビーナ:小槻 峻司(千葉大学 環境リモートセンシング研究センター)、林 武司(秋田大学教育文化学部)、福士 圭介(金沢大学環日本海域環境研究センター)、濱 侃(千葉大学大学院園芸学研究院)、座長:福士 圭介(金沢大学環日本海域環境研究センター)

09:45 〜 10:00

[AHW18-04] Optimizing Rice Crop Yield Predictions in the Vietnamese Mekong Delta: An Integrated Crop Modeling and Machine Learning Approach

*Le Dang1,2、Hiroshi ISHIDAIRA1、Phung Ky Nguyen3、Kazuyoshi SOUMA1、Jun MAGOME1、Bay Thi Nguyen4 (1.Interdisciplinary Centre for River Basin Environment, University of Yamanashi,、2.Faculty of Environment, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam、3.Thu Duc People's Committee, Ho Chi Minh City, Vietnam、4.Faculty of Civil Engineering, University of Technology, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam)

キーワード:Machine learning algorithms, DSSAT, Rice yield, Vietnamese Mekong Delta

Rice production holds a crucial role in Vietnam's food security, rural employment, and foreign exchange, with the majority originating from the Vietnamese Mekong Delta (VMD). This study aims to assess the potential of integrating the Decision Support System for Agrotechnology Transfer (DSSAT) model and machine learning algorithms including Random Forest (RF), Support Vector Regression (SVR), Bayesian Ridge (BRR), Gradient Boosting (GB) and Extreme Gradient Boosting (XGBoost) to predict and proactively manage rice productivity factors in Long Phu district, Soc Trang province, VMD. The DSSAT model, applied for simulating rice productivity from 2015 to 2020, utilizes daily meteorological data, soil characteristics, crop varieties, irrigation regime and cultivation management information as input data. The machine learning models incorporates rice yield from DSSAT output along with daily minimum and maximum temperatures, daily precipitation, daily solar radiation, and dailywind speed. With a high coefficient of determination (R2) of 0.92 and normalized root mean square error (nRMSE) of 1.39, the DSSAT model serves as a suitable input for machine learning models.Random Forest, Support Vector Regression, XGBoost, Ridge Regression, and Gradient Boosting algorithms all demonstrating R2 values exceeding 0.9. This affirms their efficacy in simulating rice yield, essential for early issue identification and yield optimization.