日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-HW 水文・陸水・地下水学・水環境

[A-HW18] 水循環・水環境

2024年5月29日(水) 13:45 〜 15:15 201A (幕張メッセ国際会議場)

コンビーナ:小槻 峻司(千葉大学 環境リモートセンシング研究センター)、林 武司(秋田大学教育文化学部)、福士 圭介(金沢大学環日本海域環境研究センター)、濱 侃(千葉大学大学院園芸学研究院)、座長:濱 侃(千葉大学大学院園芸学研究院)

15:00 〜 15:15

[AHW18-16] Estimation of Parameters in an Isotope-Enabled GCM with Data Assimilation and Satellite-Based Observations

★Invited Papers

*岡崎 淳史1木野 佳音2Cauquoin Alexandre2田上 雅浩3芳村 圭2 (1.千葉大学、2.東京大学、3.気象研究所)

キーワード:水同位体、大循環モデル、データ同化、パラメタ推定

Stable water isotopes are powerful tools for understanding the hydrological processes and the cycle. They have been implemented in general circulation models (GCMs) to help interpret the isotopic signals in precipitation and moisture. Most isotope-enabled GCMs share common isotopic parameterizations for processes such as surface evaporation from open water, condensation from vapor to ice in supersaturation conditions, and evaporation and isotopic exchange from liquid raindrops into unsaturated air. However, parameters in the processes have been poorly constrained in the previous studies, and the globally uniform parameters have been used without reasonable ground: they have been manually tuned to fit spatially sparse observations of precipitation isotopes.

This study estimates the isotopic parameters with an isotope-enabled GCM named MIROC5-iso and LETKF (Local Ensemble Transform Kalman Filter), a variant of the ensemble Kalman filter. This approach and the recent advancement of satellite-based isotope observations enable the estimation of spatially and temporally variable parameters in an efficient way. In this study, two types of isotopic observation are assimilated in the estimation: in-situ observations for precipitation isotopes and satellite-based ones for vapor isotopes. MIROC5-iso with the estimated parameters improved performance in simulating isotope ratios in precipitation and vapor. In the presentation, we will discuss the advantage of the estimated parameters by showing the model's performance in simulating climates different from the present, e.g., the Last Glacial Maximum (LGM).