日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 B (地球生命科学) » B-CG 地球生命科学複合領域・一般

[B-CG07] 岩石生命相互作用とその応用

2024年5月28日(火) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:鈴木 庸平(東京大学大学院理学系研究科)、西原 亜理沙(国立研究開発法人理化学研究所 バイオリソース研究センター )、福士 圭介(金沢大学環日本海域環境研究センター)、白石 史人(広島大学 大学院先進理工系科学研究科 地球惑星システム学プログラム)


17:15 〜 18:45

[BCG07-P06] Single-Cell Mapping of the Rock Interior by Infrared Microscopy: A Potential Tool of Sample Safety Assessment for Mars Sample Return

*幸塚 麻里子1鈴木 庸平1 (1.東京大学大学院理学系研究科 地球惑星科学専攻)

キーワード:光熱変換赤外分光法、顕微顕微赤外分光法、in-situ single-cell detection、clay-bearing rock fractures、backward planetary protection

For near-future missions planed for Mars Sample Return (MSR), an international working group organized by the Committee on Space Research (COSPAR) developed the sample safety assessment framework (SSAF). For the SSAF, analytical instruments were selected by taking the practical limitations of hosting them within a biosafety level 4 facility and the precious nature of returned samples into account. To prepare for MSR, analytical instruments of high sensitivity need to be tested on effective Mars analogue materials. As an analogue material, we selected a rock core of basalt, a prominent rock type on the Martian surface. Our previous use of destructive but spatially sensitive techniques such as nanoscale secondary ion mass spectrometry (NanoSIMS) and transmission electron microscopy coupled to energy-dispersive spectroscopy (TEM-EDS) revealed the dense microbial colonization at clay-filled fractures. We now extend that work to conventional Fourier transform infrared (FT-IR) microscopy with a spatial resolution of 10 μm. Although Fe-rich smectite called nontronite was identified, the application of conventional FT-IR microscopy is limited to a sample thickness of <30 μm. A new IR-based non-destructive technique called optical-photothermal infrared (O-PTIR) spectroscopy with a spatial resolution of 0.5 μm was applied to a 100- μm thick section of the rock core. By O-PTIR spectroscopic analysis of the clay-filled fracture, we obtained in-situ spectra diagnostic to microbial cells and nontronite. The sensitivity and specificity for microbial detection and smectite identification by O-PTIR spectroscopic analysis is comparable to those of NanoSIMS and TEM-EDS. In addition, O-PTIR spectroscopy is superior to deep ultraviolet fluorescence microscopy/μ-Raman spectroscopy, particularly for smectite identification. A simultaneous acquisition of the spatial distribution of structural motifs associated with biomolecules and smectites is critical for distinguishing biological material in samples as well as characterizing an abiotic background.