日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI24] Data assimilation: A fundamental approach in geosciences

2024年5月30日(木) 09:00 〜 10:15 104 (幕張メッセ国際会議場)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)、加納 将行(東北大学理学研究科)、座長:大石 俊(理化学研究所 計算科学研究センター)、中野 慎也(情報・システム研究機構 統計数理研究所)

09:15 〜 09:30

[MGI24-02] Advancing Forecast Precision: Data-Driven Model Generation via Data Assimilation

★Invited Papers

*Michael Goodliff1,2Takemasa Miyoshi1,2,3 (1.RIKEN Center for Computational Science、2.RIKEN Cluster for Pioneering Research、3.RIKEN interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))

キーワード:Data Assimilation, Data-driven modelling, Machine Learning

Data-driven models (DDMs) are mathematical or computational models built upon data, where patterns, relationships, or predictions are derived directly from the available information rather than through explicit instructions or rules defined by humans. These models are constructed by analysing large volumes of data to identify patterns, correlations, and trends. In areas such as numerical weather predictions (NWP), these DDMs are becoming increasingly popular with an aim to replace numerical models (or components of) based on real observations. Data assimilation (DA) is a process which combines observations from various sources with numerical models to improve the accuracy of predictions or simulations of a system's behaviour.

This presentation focuses on the application of DA methodologies in enhancing the precision and efficiency of DDM generation within computation models characterised by inherent observation error. The aim is to demonstrate the pivotal role that DA techniques can play in refining and optimising the process of DDM generation, thereby augmenting the accuracy and reliability of predictive models despite the presence of observational uncertainties.