日本地球惑星科学連合2024年大会

講演情報

[E] ポスター発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI24] Data assimilation: A fundamental approach in geosciences

2024年5月30日(木) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)、加納 将行(東北大学理学研究科)

17:15 〜 18:45

[MGI24-P09] Assimilation of polar ionospheric data into a newly-developed emulator of global MHD simulation

*中野 慎也1,2,4片岡 龍峰3,4中溝 葵5藤田 茂2,1 (1.情報・システム研究機構 統計数理研究所、2.情報・システム研究機構 データサイエンス共同利用基盤施設、3.国立極地研究所、4.総合研究大学院大学、5.情報通信研究機構)

キーワード:データ同化、エミュレータ、サロゲートモデル、機械学習、極域電離圏

We are developing a machine-learning-based emulator that mimics the outputs of the latest global MHD model of the magnetosphere-ionosphere system. In particular, the recently developed SMRAI2 (Surrogate Model for Aurora Ionosphere version 2) (Kataoka et al., 2024) is capable of reproducing realistic spatio-temporal patterns of the electric potential and current in the polar ionosphere by learning the results of long-term simulations obtained through the numerical space weather forecast carried out by the National Institute of Information and Communications Technology. The advantage of our emulator is its high computational efficiency. The time evolution scenarios under various solar wind conditions can instantaneously obtained by the emulator. This emulator can thus be used for ensemble forecast and ensemble-based data assimilation. In this study, we attempt to reproduce realistic polar ionosphere environments by data assimilation which incorporates actual ionospheric observations into the predictions with SMRAI2. We will report the current status and demonstrate some preliminary results of the data assimilation.

Reference
Kataoka, R., Nakamizo, A., Nakano, S., and Fujita, S. (2024): Machine learning-based emulator for the physics-based simulation of auroral current system. Space Weather, 22, e2023SW003720. https://doi.org/10.1029/2023SW003720