日本地球惑星科学連合2024年大会

講演情報

[J] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI30] 情報地球惑星科学と大量データ処理

2024年5月31日(金) 13:45 〜 15:00 201B (幕張メッセ国際会議場)

コンビーナ:村田 健史(情報通信研究機構)、野々垣 進(国立研究開発法人 産業技術総合研究所 地質調査総合センター)、深沢 圭一郎(京都大学学術情報メディアセンター)、木戸 ゆかり(国立研究開発法人海洋研究開発機構)、座長:深沢 圭一郎(京都大学学術情報メディアセンター)、野々垣 進(国立研究開発法人 産業技術総合研究所 地質調査総合センター)

14:45 〜 15:00

[MGI30-05] HISUIデータを用いた鉱物含有率推定法の精度評価

*岸本 将英1久保 大樹1小池 克明1 (1.京都大学大学院工学研究科 都市社会工学専攻地殻環境工学講座)

キーワード:衛星リモートセンシング、ハイパースペクトル画像、熱水変質鉱物、スパーススペクトル分離、Cupriteフィールド(アメリカ合衆国)

Remote sensing using Earth observation satellites has been widely applied to detect signs of metallic deposits and hydrothermally altered minerals, because it can detect them in wide areas. With many observation wavelength ranges (bands) and a large amount of information, Hyperspectral satellite imagery can identify surface materials accurately. HISUI (Hyperspectral Imager SUIte) is one of the recent hyperspectral optical sensors mounted on the “KIBO” of the International Space Station (ISS) for satellite imagery, and the image data have been freely downloadable from 2022. Although more than 277,422 image data are currently available and more detailed analysis is expected, use cases are limited. Therefore, the purpose of this study is to develop a high-precision method of mineral content estimation, which is required for resource exploration, using HISUI images and to demonstrate its usefulness though a case study by selecting the Cuprite field, west Nevada, USA. Because detailed investigations of surface minerals, mostly hydrothermal alteration minerals such as alunite, kaolinite, and opal, have been conducted in the Cuprite field by geological surveys and many remote sensing analyses, this field is most suitable for verifying the accuracy of the proposed method. We used a sparse spectral unmixing method for the content estimation of target minerals and produces a map of mineral distributions using HISUI images taken on 1 October 2021 with a cloud cover of zero. As a result, effectiveness of the combination of the sparse spectral unmixing method and HISUI image data was demonstrated in that we can get a mineral distribution map that corresponds well to the geological map.