Japan Geoscience Union Meeting 2024

Presentation information

[J] Oral

M (Multidisciplinary and Interdisciplinary) » M-TT Technology & Techniques

[M-TT37] New Frontier of Earth Science pioneered by Dense GNSS Observation Networks

Wed. May 29, 2024 1:45 PM - 3:00 PM 301B (International Conference Hall, Makuhari Messe)

convener:Yusaku Ohta(Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University), Takuya NISHIMURA(Disaster Prevention Research Institute, Kyoto University), Yuichi Otsuka(Institute for Space-Earth Environmental Research, Nagoya University), Mikiko Fujita(Japan Agency for Marine-Earth Science and Technology), Chairperson:Mako Ohzono(Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University), Ryosuke Doke(Graduate School of Science and Technology, Hirosaki University)

1:45 PM - 2:00 PM

[MTT37-01] Deformation of the 2020-2024 Noto Peninsula earthquake sequence revealed by combined analysis of multiple GNSS observation networks in central Japan

*Takuya NISHIMURA1, Yoshihiro Hiramatsu2, Yusaku Ohta3 (1.Disaster Prevention Research Institute, Kyoto University, 2.Kanazawa University, 3.Tohoku University)

Keywords:GNSS, Crustal deformation, Earthquake swarm, Noto Peninsula, SoftBank original reference site

Since November 30, 2020, an intense earthquake swarm with over 22,000 M>1 earthquakes and transient deformation have been continuously observed in the Noto Peninsula, central Japan, which is a non-volcanic/geothermal area far from major plate boundaries. During the earthquake sequence, Mw6.2 and Mw7.5 earthquakes occurred on May 5, 2023, and January 1, 2024, respectively. We report the transient and coseismic deformation related to the earthquake sequence by a combined analysis of multiple Global Navigation Satellite System (GNSS) observation networks, including one operated by a private sector company (SoftBank Corp.), relocated earthquake hypocenters, and tectonic settings. The start of the transient deformation coincides with a burst-type activity of small earthquakes in late 2020. A total displacement pattern in the first two years shows horizontal inflation and uplift of up to ~60 mm around the source of the earthquake swarm. The overall deformation rate gradually decreased with time except for the coseismic displacement of the Mw 6.2 earthquake and its postseismic displacement. On January 1, 2024, the coseismic horizontal and vertical displacements reached ~2 m at several GNSS sites. The pattern of the postseismic displacement for the first four weeks is similar to that of the coseismic displacement, though spatial decay of the postseismic displacement from the epicentral area is much gentler than that of the coseismic displacement. Viscoelastic relaxation of the mantle and/or lower crust is probably an important factor in explaining the observed deformation. In order to explain the transient deformation before the Mw6.2 and Mw7.5 earthquakes, we assumed a southeast-dipping fault plane based on the observed seismicity and regional tectonics and estimated the distribution of both reverse-slip and tensile components on the fault plane. In the first three months, a significant tensile component with a small slip component was estimated around a depth of ~15 km. The estimated volumetric increase is ~1.4 x 107m3. Over the next 15 months, the observed deformation was well reproduced by shear-tensile sources, which represent an aseismic reverse-type slip and the opening of the southeast-dipping fault zone at a depth of 14-16 km. These slips and openings of the fault are estimated mainly at the down-dip extension of the intense earthquakes. We suggest that fluid was upwelled from the lower crust in a southern earthquake cluster and that the upwelling fluid spread at a depth of ~16 km through an existing shallow-dipping permeable fault zone and then diffused into the fault zone, triggering a long-lasting sub-meter aseismic slip below the seismogenic depth. The aseismic slip further triggered intense earthquake swarms including the Mw6.2 and Mw7.5 earthquakes at the updip.

Acknowledgments: The SoftBank's GNSS observation data used in this study was provided by SoftBank Corp. and ALES Corp. through the framework of the "Consortium to utilize the SoftBank original reference sites for Earth and Space Science". We are also grateful to GSI for providing GNSS data.