日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 M (領域外・複数領域) » M-TT 計測技術・研究手法

[M-TT37] 稠密多点GNSS観測が切り拓く地球科学の新展開

2024年5月29日(水) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:太田 雄策(東北大学大学院理学研究科附属地震・噴火予知研究観測センター)、西村 卓也(京都大学防災研究所)、大塚 雄一(名古屋大学宇宙地球環境研究所)、藤田 実季子(国立研究開発法人 海洋研究開発機構)

17:15 〜 18:45

[MTT37-P07] 頑健なスペクトル解析法に基づくGNSS時系列のノイズ特性:(1)ロバストスペクトル推定手法の説明

*矢野 恵佑1加納 将行2、高畠 哲也3田中 優介2太田 雄策2 (1.統計数理研究所、2.東北大学、3.広島大学)

キーワード:GNSS、GEONET、spectral analysis、observation noise

GNSS is an observation system to measure the locations of observation stations by receiving radio waves transmitted from the satellites. Due to this observation principle, raw GNSS data contain various information from satellites to receivers such as the ionosphere, atmosphere, surrounding environment close to the antennas, as well as the motion of the Earth. Thus, pre-processing of raw GNSS data is required to estimate the target products by modeling the other factors using analysis software.
The Geospatial Information Authority of Japan provides the daily coordinates at the GEONET stations as the F5 solution (Takamatsu et al. 2023). Because of its convenient use, the F5 solution is frequently used for a variety of geodetic, seismic, and volcanic analyses related to crustal deformation. To precisely extract the transient deformation due to tectonic or volcanic processes, it is important to understand the spatio-temporal noise characteristics and to accurately model them. Nonetheless, the comprehensive analysis of spatio-temporal noise characteristics in the F5 solution has been rarely published.
Takabatake and Yano (2023) recently proposed a method to robustly estimate the frequency-domain characteristics of observed time series. In this presentation, we introduce this robust spectral estimation; for the application of this method to the GEONET F5 solution, (see the accompanying presentation, Kano et al. in this session). The method utilizes the spectral Renyi divergences, which includes the Itakura-Saito divergence as a limit. The Itakura-Saito divergence (Itakura and Saito, 1968; Whittle, 1953) is widely used in the spectral analysis and provides the foundations of the maximum likelihood method or Burg’s maximum entropy method. However, the method based on the Itakura-Saito divergence is unstable in the presence of outliers in the frequency domain such as annual or semi-annual components. The spectral estimation using the spectral Renyi divergence is shown to become more stable against the presence of outliers in the frequency domain than that using the Itakura-Saito divergence, which reduces the effect due to pre-processing of observations.