日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG19] 系外惑星

2024年5月28日(火) 09:00 〜 10:30 102 (幕張メッセ国際会議場)

コンビーナ:小玉 貴則(地球生命研究所、東京工業大学)、野津 翔太(東京大学 大学院理学系研究科 地球惑星科学専攻 地球惑星システム科学講座)、川島 由依(東北大学)、森 万由子(東京大学)、座長:小玉 貴則(地球生命研究所、東京工業大学)、野津 翔太(東京大学 大学院理学系研究科 地球惑星科学専攻 地球惑星システム科学講座)


09:45 〜 10:00

[PCG19-04] マイクロレンズ惑星頻度の主星質量依存性に対する初の有効な制限

*布田 寛介1、越本 直李1、鈴木 大介1、住 貴宏1、デイビット ベネット2、アパルナ バタチャリア2、平尾 優樹4、ショーン テリー3、ケイティ ヴァンドロウ2 (1.大阪大学理学研究科宇宙地球科学専攻、2.メリーランド大学 天文学専攻、3.メリーランド大学 天文学専攻、4.東京大学大学院理学系研究科附属 天文学教育研究センター)

キーワード:系外惑星、重力マイクロレンズ法、惑星形成論

More than 5500 exoplanets have been discovered to date and gravitational microlensing is one of the most effective methods to detect planets.
Gravitational microlensing is a unique method that can detect planets residing in a wide range of parameter space, such as planets in the Galactic disk or bulge, planets around late M-dwarfs or G-dwarfs, and even planets around white dwarfs. Measuring the planet frequency as a function of host star mass and location in our Galaxy via microlensing enables us to study the comprehensive picture of planet formation throughout our Galaxy.
We examine a dependence of planet frequency on the host star mass, ML, and distance from the Galactic center, RL, using a sample of planets discovered by gravitational microlensing.
We compare the two-dimensional distribution of the lens-source proper motion, murel, and the Einstein radius crossing time, tE, measured for the 22 planetary events from Suzuki et al 2016 with the distribution from the Galactic model.
Assuming that the planet-hosting probability of a star is proportional to MLm * RLr, we calculate the likelihood distribution of (m,r). We estimate that r = 0.10+0.51-0.37, m = 0.50+0.90-0.70 under the assumption that the planet-hosting probability is independent of the mass ratio.
The effective constraint on the host mass dependence is the first result for microlensing planets.
We also divide the planet sample into subsamples based on their mass ratio, q, and estimate that m=-0.08+0.95-0.65 for q < 10-3 and 1.25+1.07-1.14 for q > 10-3.
Although uncertainties are still large, this result implies a possibility that massive planets are more likely to exist around more massive stars whereas low-mass planets exist regardless of their host star mass.
These results are not only informative for planet formation theory but also helpful for microlensing events analysis that will be discovered by Roman Space Telescope.