日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG19] 系外惑星

2024年5月28日(火) 10:45 〜 12:00 102 (幕張メッセ国際会議場)

コンビーナ:小玉 貴則(地球生命研究所、東京工業大学)、野津 翔太(東京大学 大学院理学系研究科 地球惑星科学専攻 地球惑星システム科学講座)、川島 由依(東北大学)、森 万由子(東京大学)、座長:川島 由依(宇宙航空研究開発機構)、川内 紀代恵(立命館大学)


11:45 〜 12:00

[PCG19-11] Spectral Line Profile Measurement of Methane for Investigating the Atmospheres Rich in H2 and He in Substellar Objects

*細川 晃1、小谷 隆行1,2,3河原 創4,9川島 由依4,9吉岡 和夫6、増田 賢人5、石川 裕之8笠木 結1高橋 葵2,3、樫山 和己7田近 英一6 (1.総合研究大学院大学、2.アストロバイオロジーセンター、3.国立天文台、4.宇宙科学研究所、5.大阪大学、6.東京大学、7.東北大学、8.ウェスタン大学、9.宇宙航空研究開発機構)

キーワード:高分散分光、装置開発、分子、大気、ガス惑星、褐色矮星

High-resolution spectral analysis is becoming a key method for exploring the atmospheres of substellar objects. While there are available line lists like HITEMP and Exomol for analysis, accurately modeling atmospheric spectra, especially for gas giants and brown dwarfs abundant in hydrogen and helium, presents challenges due to the lack of experimental data on the pressure-induced broadening parameter of molecular absorption lines.
To address this, we developed an experimental setup designed to estimate the line profile parameters by measuring the high-resolution transmission spectra of target molecules, within an environment simulating solar composition gases at specified pressures (0.1 - 1 bar) and temperatures (300 - 1400K). Employing the Hamiltonian Monte Carlo (HMC) method, our system is capable of estimating the Lorentzian coefficient(γ0) and its temperature dependence (n) for these environments along with the associated error. As a prototype experiment, we successfully captured several methane absorption lines at temperatures up to 1000K, with a wavelength of λ=1.62μm and a wavelength resolution of R=640000, and obtained the results including a significant value difference between the existing databases. Our ongoing efforts aim to extend the wavelength range of λ=1.60 - 1.63μm, where significant discrepancies exist between current models by existing databases and observed spectra. We also planning to measure carbon monoxide around λ=2.3μm as the next step.
We will present an overview of our system's design, analysis methods, and how our findings compare with those from existing databases.